Metamath Proof Explorer


Theorem lcv2

Description: Covering property of a subspace plus an atom. ( chcv2 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcv2.s S = LSubSp W
lcv2.p ˙ = LSSum W
lcv2.a A = LSAtoms W
lcv2.c C = L W
lcv2.w φ W LVec
lcv2.u φ U S
lcv2.q φ Q A
Assertion lcv2 φ U U ˙ Q U C U ˙ Q

Proof

Step Hyp Ref Expression
1 lcv2.s S = LSubSp W
2 lcv2.p ˙ = LSSum W
3 lcv2.a A = LSAtoms W
4 lcv2.c C = L W
5 lcv2.w φ W LVec
6 lcv2.u φ U S
7 lcv2.q φ Q A
8 lveclmod W LVec W LMod
9 5 8 syl φ W LMod
10 1 lsssssubg W LMod S SubGrp W
11 9 10 syl φ S SubGrp W
12 11 6 sseldd φ U SubGrp W
13 1 3 9 7 lsatlssel φ Q S
14 11 13 sseldd φ Q SubGrp W
15 2 12 14 lssnle φ ¬ Q U U U ˙ Q
16 1 2 3 4 5 6 7 lcv1 φ ¬ Q U U C U ˙ Q
17 15 16 bitr3d φ U U ˙ Q U C U ˙ Q