Metamath Proof Explorer


Theorem lsatexch

Description: The atom exchange property. Proposition 1(i) of Kalmbach p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. ( atexch analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatexch.s S = LSubSp W
lsatexch.p ˙ = LSSum W
lsatexch.o 0 ˙ = 0 W
lsatexch.a A = LSAtoms W
lsatexch.w φ W LVec
lsatexch.u φ U S
lsatexch.q φ Q A
lsatexch.r φ R A
lsatexch.l φ Q U ˙ R
lsatexch.z φ U Q = 0 ˙
Assertion lsatexch φ R U ˙ Q

Proof

Step Hyp Ref Expression
1 lsatexch.s S = LSubSp W
2 lsatexch.p ˙ = LSSum W
3 lsatexch.o 0 ˙ = 0 W
4 lsatexch.a A = LSAtoms W
5 lsatexch.w φ W LVec
6 lsatexch.u φ U S
7 lsatexch.q φ Q A
8 lsatexch.r φ R A
9 lsatexch.l φ Q U ˙ R
10 lsatexch.z φ U Q = 0 ˙
11 lveclmod W LVec W LMod
12 5 11 syl φ W LMod
13 1 lsssssubg W LMod S SubGrp W
14 12 13 syl φ S SubGrp W
15 14 6 sseldd φ U SubGrp W
16 1 4 12 8 lsatlssel φ R S
17 14 16 sseldd φ R SubGrp W
18 2 lsmub2 U SubGrp W R SubGrp W R U ˙ R
19 15 17 18 syl2anc φ R U ˙ R
20 eqid L W = L W
21 1 2 lsmcl W LMod U S R S U ˙ R S
22 12 6 16 21 syl3anc φ U ˙ R S
23 1 4 12 7 lsatlssel φ Q S
24 1 2 lsmcl W LMod U S Q S U ˙ Q S
25 12 6 23 24 syl3anc φ U ˙ Q S
26 1 2 3 4 20 5 6 7 lcvp φ U Q = 0 ˙ U L W U ˙ Q
27 10 26 mpbid φ U L W U ˙ Q
28 1 20 5 6 25 27 lcvpss φ U U ˙ Q
29 2 lsmub1 U SubGrp W R SubGrp W U U ˙ R
30 15 17 29 syl2anc φ U U ˙ R
31 14 23 sseldd φ Q SubGrp W
32 14 22 sseldd φ U ˙ R SubGrp W
33 2 lsmlub U SubGrp W Q SubGrp W U ˙ R SubGrp W U U ˙ R Q U ˙ R U ˙ Q U ˙ R
34 15 31 32 33 syl3anc φ U U ˙ R Q U ˙ R U ˙ Q U ˙ R
35 30 9 34 mpbi2and φ U ˙ Q U ˙ R
36 28 35 psssstrd φ U U ˙ R
37 1 2 4 20 5 6 8 lcv2 φ U U ˙ R U L W U ˙ R
38 36 37 mpbid φ U L W U ˙ R
39 1 20 5 6 22 25 38 28 35 lcvnbtwn2 φ U ˙ Q = U ˙ R
40 19 39 sseqtrrd φ R U ˙ Q