Metamath Proof Explorer


Theorem lsatnle

Description: The meet of a subspace and an incomparable atom is the zero subspace. ( atnssm0 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatnle.o
|- .0. = ( 0g ` W )
lsatnle.s
|- S = ( LSubSp ` W )
lsatnle.a
|- A = ( LSAtoms ` W )
lsatnle.w
|- ( ph -> W e. LVec )
lsatnle.u
|- ( ph -> U e. S )
lsatnle.q
|- ( ph -> Q e. A )
Assertion lsatnle
|- ( ph -> ( -. Q C_ U <-> ( U i^i Q ) = { .0. } ) )

Proof

Step Hyp Ref Expression
1 lsatnle.o
 |-  .0. = ( 0g ` W )
2 lsatnle.s
 |-  S = ( LSubSp ` W )
3 lsatnle.a
 |-  A = ( LSAtoms ` W )
4 lsatnle.w
 |-  ( ph -> W e. LVec )
5 lsatnle.u
 |-  ( ph -> U e. S )
6 lsatnle.q
 |-  ( ph -> Q e. A )
7 eqid
 |-  ( LSSum ` W ) = ( LSSum ` W )
8 eqid
 |-  ( 
    9 2 7 3 8 4 5 6 lcv1
     |-  ( ph -> ( -. Q C_ U <-> U ( 
      10 2 7 1 3 8 4 5 6 lcvp
       |-  ( ph -> ( ( U i^i Q ) = { .0. } <-> U ( 
        11 9 10 bitr4d
         |-  ( ph -> ( -. Q C_ U <-> ( U i^i Q ) = { .0. } ) )