Description: The meet of a subspace and an incomparable atom is the zero subspace. ( atnssm0 analog.) (Contributed by NM, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsatnle.o | |- .0. = ( 0g ` W ) |
|
| lsatnle.s | |- S = ( LSubSp ` W ) |
||
| lsatnle.a | |- A = ( LSAtoms ` W ) |
||
| lsatnle.w | |- ( ph -> W e. LVec ) |
||
| lsatnle.u | |- ( ph -> U e. S ) |
||
| lsatnle.q | |- ( ph -> Q e. A ) |
||
| Assertion | lsatnle | |- ( ph -> ( -. Q C_ U <-> ( U i^i Q ) = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatnle.o | |- .0. = ( 0g ` W ) |
|
| 2 | lsatnle.s | |- S = ( LSubSp ` W ) |
|
| 3 | lsatnle.a | |- A = ( LSAtoms ` W ) |
|
| 4 | lsatnle.w | |- ( ph -> W e. LVec ) |
|
| 5 | lsatnle.u | |- ( ph -> U e. S ) |
|
| 6 | lsatnle.q | |- ( ph -> Q e. A ) |
|
| 7 | eqid | |- ( LSSum ` W ) = ( LSSum ` W ) |
|
| 8 | eqid | |- ( |
|
| 9 | 2 7 3 8 4 5 6 | lcv1 | |- ( ph -> ( -. Q C_ U <-> U ( |
| 10 | 2 7 1 3 8 4 5 6 | lcvp | |- ( ph -> ( ( U i^i Q ) = { .0. } <-> U ( |
| 11 | 9 10 | bitr4d | |- ( ph -> ( -. Q C_ U <-> ( U i^i Q ) = { .0. } ) ) |