Step |
Hyp |
Ref |
Expression |
1 |
|
lsatnle.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsatnle.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lsatnle.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
lsatnle.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lsatnle.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lsatnle.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( ⋖L ‘ 𝑊 ) = ( ⋖L ‘ 𝑊 ) |
9 |
2 7 3 8 4 5 6
|
lcv1 |
⊢ ( 𝜑 → ( ¬ 𝑄 ⊆ 𝑈 ↔ 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) 𝑄 ) ) ) |
10 |
2 7 1 3 8 4 5 6
|
lcvp |
⊢ ( 𝜑 → ( ( 𝑈 ∩ 𝑄 ) = { 0 } ↔ 𝑈 ( ⋖L ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) 𝑄 ) ) ) |
11 |
9 10
|
bitr4d |
⊢ ( 𝜑 → ( ¬ 𝑄 ⊆ 𝑈 ↔ ( 𝑈 ∩ 𝑄 ) = { 0 } ) ) |