Metamath Proof Explorer


Theorem lsatnle

Description: The meet of a subspace and an incomparable atom is the zero subspace. ( atnssm0 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatnle.o 0 = ( 0g𝑊 )
lsatnle.s 𝑆 = ( LSubSp ‘ 𝑊 )
lsatnle.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatnle.w ( 𝜑𝑊 ∈ LVec )
lsatnle.u ( 𝜑𝑈𝑆 )
lsatnle.q ( 𝜑𝑄𝐴 )
Assertion lsatnle ( 𝜑 → ( ¬ 𝑄𝑈 ↔ ( 𝑈𝑄 ) = { 0 } ) )

Proof

Step Hyp Ref Expression
1 lsatnle.o 0 = ( 0g𝑊 )
2 lsatnle.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lsatnle.a 𝐴 = ( LSAtoms ‘ 𝑊 )
4 lsatnle.w ( 𝜑𝑊 ∈ LVec )
5 lsatnle.u ( 𝜑𝑈𝑆 )
6 lsatnle.q ( 𝜑𝑄𝐴 )
7 eqid ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 )
8 eqid ( ⋖L𝑊 ) = ( ⋖L𝑊 )
9 2 7 3 8 4 5 6 lcv1 ( 𝜑 → ( ¬ 𝑄𝑈𝑈 ( ⋖L𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) 𝑄 ) ) )
10 2 7 1 3 8 4 5 6 lcvp ( 𝜑 → ( ( 𝑈𝑄 ) = { 0 } ↔ 𝑈 ( ⋖L𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) 𝑄 ) ) )
11 9 10 bitr4d ( 𝜑 → ( ¬ 𝑄𝑈 ↔ ( 𝑈𝑄 ) = { 0 } ) )