| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatexch1.p |
|- .(+) = ( LSSum ` W ) |
| 2 |
|
lsatexch1.a |
|- A = ( LSAtoms ` W ) |
| 3 |
|
lsatexch1.w |
|- ( ph -> W e. LVec ) |
| 4 |
|
lsatexch1.u |
|- ( ph -> Q e. A ) |
| 5 |
|
lsatexch1.q |
|- ( ph -> R e. A ) |
| 6 |
|
lsatexch1.r |
|- ( ph -> S e. A ) |
| 7 |
|
lsatexch1.l |
|- ( ph -> Q C_ ( S .(+) R ) ) |
| 8 |
|
lsatexch1.z |
|- ( ph -> Q =/= S ) |
| 9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 10 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 11 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 12 |
3 11
|
syl |
|- ( ph -> W e. LMod ) |
| 13 |
9 2 12 6
|
lsatlssel |
|- ( ph -> S e. ( LSubSp ` W ) ) |
| 14 |
8
|
necomd |
|- ( ph -> S =/= Q ) |
| 15 |
10 2 3 6 4
|
lsatnem0 |
|- ( ph -> ( S =/= Q <-> ( S i^i Q ) = { ( 0g ` W ) } ) ) |
| 16 |
14 15
|
mpbid |
|- ( ph -> ( S i^i Q ) = { ( 0g ` W ) } ) |
| 17 |
9 1 10 2 3 13 4 5 7 16
|
lsatexch |
|- ( ph -> R C_ ( S .(+) Q ) ) |