Step |
Hyp |
Ref |
Expression |
1 |
|
lsatexch1.p |
|- .(+) = ( LSSum ` W ) |
2 |
|
lsatexch1.a |
|- A = ( LSAtoms ` W ) |
3 |
|
lsatexch1.w |
|- ( ph -> W e. LVec ) |
4 |
|
lsatexch1.u |
|- ( ph -> Q e. A ) |
5 |
|
lsatexch1.q |
|- ( ph -> R e. A ) |
6 |
|
lsatexch1.r |
|- ( ph -> S e. A ) |
7 |
|
lsatexch1.l |
|- ( ph -> Q C_ ( S .(+) R ) ) |
8 |
|
lsatexch1.z |
|- ( ph -> Q =/= S ) |
9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
10 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
11 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
12 |
3 11
|
syl |
|- ( ph -> W e. LMod ) |
13 |
9 2 12 6
|
lsatlssel |
|- ( ph -> S e. ( LSubSp ` W ) ) |
14 |
8
|
necomd |
|- ( ph -> S =/= Q ) |
15 |
10 2 3 6 4
|
lsatnem0 |
|- ( ph -> ( S =/= Q <-> ( S i^i Q ) = { ( 0g ` W ) } ) ) |
16 |
14 15
|
mpbid |
|- ( ph -> ( S i^i Q ) = { ( 0g ` W ) } ) |
17 |
9 1 10 2 3 13 4 5 7 16
|
lsatexch |
|- ( ph -> R C_ ( S .(+) Q ) ) |