| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcv0eq.o |
|- .0. = ( 0g ` W ) |
| 2 |
|
lsatcv0eq.p |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
lsatcv0eq.a |
|- A = ( LSAtoms ` W ) |
| 4 |
|
lsatcv0eq.c |
|- C = (
|
| 5 |
|
lsatcv0eq.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lsatcv0eq.q |
|- ( ph -> Q e. A ) |
| 7 |
|
lsatcv0eq.r |
|- ( ph -> R e. A ) |
| 8 |
1 3 5 6 7
|
lsatnem0 |
|- ( ph -> ( Q =/= R <-> ( Q i^i R ) = { .0. } ) ) |
| 9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 11 |
5 10
|
syl |
|- ( ph -> W e. LMod ) |
| 12 |
9 3 11 6
|
lsatlssel |
|- ( ph -> Q e. ( LSubSp ` W ) ) |
| 13 |
9 2 1 3 4 5 12 7
|
lcvp |
|- ( ph -> ( ( Q i^i R ) = { .0. } <-> Q C ( Q .(+) R ) ) ) |
| 14 |
1 3 4 5 6
|
lsatcv0 |
|- ( ph -> { .0. } C Q ) |
| 15 |
14
|
biantrurd |
|- ( ph -> ( Q C ( Q .(+) R ) <-> ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) ) |
| 16 |
8 13 15
|
3bitrd |
|- ( ph -> ( Q =/= R <-> ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) -> W e. LVec ) |
| 18 |
1 9
|
lsssn0 |
|- ( W e. LMod -> { .0. } e. ( LSubSp ` W ) ) |
| 19 |
11 18
|
syl |
|- ( ph -> { .0. } e. ( LSubSp ` W ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) -> { .0. } e. ( LSubSp ` W ) ) |
| 21 |
12
|
adantr |
|- ( ( ph /\ ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) -> Q e. ( LSubSp ` W ) ) |
| 22 |
9 3 11 7
|
lsatlssel |
|- ( ph -> R e. ( LSubSp ` W ) ) |
| 23 |
9 2
|
lsmcl |
|- ( ( W e. LMod /\ Q e. ( LSubSp ` W ) /\ R e. ( LSubSp ` W ) ) -> ( Q .(+) R ) e. ( LSubSp ` W ) ) |
| 24 |
11 12 22 23
|
syl3anc |
|- ( ph -> ( Q .(+) R ) e. ( LSubSp ` W ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) -> ( Q .(+) R ) e. ( LSubSp ` W ) ) |
| 26 |
|
simprl |
|- ( ( ph /\ ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) -> { .0. } C Q ) |
| 27 |
|
simprr |
|- ( ( ph /\ ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) -> Q C ( Q .(+) R ) ) |
| 28 |
9 4 17 20 21 25 26 27
|
lcvntr |
|- ( ( ph /\ ( { .0. } C Q /\ Q C ( Q .(+) R ) ) ) -> -. { .0. } C ( Q .(+) R ) ) |
| 29 |
28
|
ex |
|- ( ph -> ( ( { .0. } C Q /\ Q C ( Q .(+) R ) ) -> -. { .0. } C ( Q .(+) R ) ) ) |
| 30 |
16 29
|
sylbid |
|- ( ph -> ( Q =/= R -> -. { .0. } C ( Q .(+) R ) ) ) |
| 31 |
30
|
necon4ad |
|- ( ph -> ( { .0. } C ( Q .(+) R ) -> Q = R ) ) |
| 32 |
9
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 33 |
11 32
|
syl |
|- ( ph -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 34 |
33 12
|
sseldd |
|- ( ph -> Q e. ( SubGrp ` W ) ) |
| 35 |
2
|
lsmidm |
|- ( Q e. ( SubGrp ` W ) -> ( Q .(+) Q ) = Q ) |
| 36 |
34 35
|
syl |
|- ( ph -> ( Q .(+) Q ) = Q ) |
| 37 |
14 36
|
breqtrrd |
|- ( ph -> { .0. } C ( Q .(+) Q ) ) |
| 38 |
|
oveq2 |
|- ( Q = R -> ( Q .(+) Q ) = ( Q .(+) R ) ) |
| 39 |
38
|
breq2d |
|- ( Q = R -> ( { .0. } C ( Q .(+) Q ) <-> { .0. } C ( Q .(+) R ) ) ) |
| 40 |
37 39
|
syl5ibcom |
|- ( ph -> ( Q = R -> { .0. } C ( Q .(+) R ) ) ) |
| 41 |
31 40
|
impbid |
|- ( ph -> ( { .0. } C ( Q .(+) R ) <-> Q = R ) ) |