Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcv0eq.o |
|
2 |
|
lsatcv0eq.p |
|
3 |
|
lsatcv0eq.a |
|
4 |
|
lsatcv0eq.c |
|
5 |
|
lsatcv0eq.w |
|
6 |
|
lsatcv0eq.q |
|
7 |
|
lsatcv0eq.r |
|
8 |
1 3 5 6 7
|
lsatnem0 |
|
9 |
|
eqid |
|
10 |
|
lveclmod |
|
11 |
5 10
|
syl |
|
12 |
9 3 11 6
|
lsatlssel |
|
13 |
9 2 1 3 4 5 12 7
|
lcvp |
|
14 |
1 3 4 5 6
|
lsatcv0 |
|
15 |
14
|
biantrurd |
|
16 |
8 13 15
|
3bitrd |
|
17 |
5
|
adantr |
|
18 |
1 9
|
lsssn0 |
|
19 |
11 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
12
|
adantr |
|
22 |
9 3 11 7
|
lsatlssel |
|
23 |
9 2
|
lsmcl |
|
24 |
11 12 22 23
|
syl3anc |
|
25 |
24
|
adantr |
|
26 |
|
simprl |
|
27 |
|
simprr |
|
28 |
9 4 17 20 21 25 26 27
|
lcvntr |
|
29 |
28
|
ex |
|
30 |
16 29
|
sylbid |
|
31 |
30
|
necon4ad |
|
32 |
9
|
lsssssubg |
|
33 |
11 32
|
syl |
|
34 |
33 12
|
sseldd |
|
35 |
2
|
lsmidm |
|
36 |
34 35
|
syl |
|
37 |
14 36
|
breqtrrd |
|
38 |
|
oveq2 |
|
39 |
38
|
breq2d |
|
40 |
37 39
|
syl5ibcom |
|
41 |
31 40
|
impbid |
|