Metamath Proof Explorer


Theorem lsatcv0eq

Description: If the sum of two atoms cover the zero subspace, they are equal. ( atcv0eq analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcv0eq.o 0 ˙ = 0 W
lsatcv0eq.p ˙ = LSSum W
lsatcv0eq.a A = LSAtoms W
lsatcv0eq.c C = L W
lsatcv0eq.w φ W LVec
lsatcv0eq.q φ Q A
lsatcv0eq.r φ R A
Assertion lsatcv0eq φ 0 ˙ C Q ˙ R Q = R

Proof

Step Hyp Ref Expression
1 lsatcv0eq.o 0 ˙ = 0 W
2 lsatcv0eq.p ˙ = LSSum W
3 lsatcv0eq.a A = LSAtoms W
4 lsatcv0eq.c C = L W
5 lsatcv0eq.w φ W LVec
6 lsatcv0eq.q φ Q A
7 lsatcv0eq.r φ R A
8 1 3 5 6 7 lsatnem0 φ Q R Q R = 0 ˙
9 eqid LSubSp W = LSubSp W
10 lveclmod W LVec W LMod
11 5 10 syl φ W LMod
12 9 3 11 6 lsatlssel φ Q LSubSp W
13 9 2 1 3 4 5 12 7 lcvp φ Q R = 0 ˙ Q C Q ˙ R
14 1 3 4 5 6 lsatcv0 φ 0 ˙ C Q
15 14 biantrurd φ Q C Q ˙ R 0 ˙ C Q Q C Q ˙ R
16 8 13 15 3bitrd φ Q R 0 ˙ C Q Q C Q ˙ R
17 5 adantr φ 0 ˙ C Q Q C Q ˙ R W LVec
18 1 9 lsssn0 W LMod 0 ˙ LSubSp W
19 11 18 syl φ 0 ˙ LSubSp W
20 19 adantr φ 0 ˙ C Q Q C Q ˙ R 0 ˙ LSubSp W
21 12 adantr φ 0 ˙ C Q Q C Q ˙ R Q LSubSp W
22 9 3 11 7 lsatlssel φ R LSubSp W
23 9 2 lsmcl W LMod Q LSubSp W R LSubSp W Q ˙ R LSubSp W
24 11 12 22 23 syl3anc φ Q ˙ R LSubSp W
25 24 adantr φ 0 ˙ C Q Q C Q ˙ R Q ˙ R LSubSp W
26 simprl φ 0 ˙ C Q Q C Q ˙ R 0 ˙ C Q
27 simprr φ 0 ˙ C Q Q C Q ˙ R Q C Q ˙ R
28 9 4 17 20 21 25 26 27 lcvntr φ 0 ˙ C Q Q C Q ˙ R ¬ 0 ˙ C Q ˙ R
29 28 ex φ 0 ˙ C Q Q C Q ˙ R ¬ 0 ˙ C Q ˙ R
30 16 29 sylbid φ Q R ¬ 0 ˙ C Q ˙ R
31 30 necon4ad φ 0 ˙ C Q ˙ R Q = R
32 9 lsssssubg W LMod LSubSp W SubGrp W
33 11 32 syl φ LSubSp W SubGrp W
34 33 12 sseldd φ Q SubGrp W
35 2 lsmidm Q SubGrp W Q ˙ Q = Q
36 34 35 syl φ Q ˙ Q = Q
37 14 36 breqtrrd φ 0 ˙ C Q ˙ Q
38 oveq2 Q = R Q ˙ Q = Q ˙ R
39 38 breq2d Q = R 0 ˙ C Q ˙ Q 0 ˙ C Q ˙ R
40 37 39 syl5ibcom φ Q = R 0 ˙ C Q ˙ R
41 31 40 impbid φ 0 ˙ C Q ˙ R Q = R