Metamath Proof Explorer


Theorem lsatcv0eq

Description: If the sum of two atoms cover the zero subspace, they are equal. ( atcv0eq analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcv0eq.o 0˙=0W
lsatcv0eq.p ˙=LSSumW
lsatcv0eq.a A=LSAtomsW
lsatcv0eq.c C=LW
lsatcv0eq.w φWLVec
lsatcv0eq.q φQA
lsatcv0eq.r φRA
Assertion lsatcv0eq φ0˙CQ˙RQ=R

Proof

Step Hyp Ref Expression
1 lsatcv0eq.o 0˙=0W
2 lsatcv0eq.p ˙=LSSumW
3 lsatcv0eq.a A=LSAtomsW
4 lsatcv0eq.c C=LW
5 lsatcv0eq.w φWLVec
6 lsatcv0eq.q φQA
7 lsatcv0eq.r φRA
8 1 3 5 6 7 lsatnem0 φQRQR=0˙
9 eqid LSubSpW=LSubSpW
10 lveclmod WLVecWLMod
11 5 10 syl φWLMod
12 9 3 11 6 lsatlssel φQLSubSpW
13 9 2 1 3 4 5 12 7 lcvp φQR=0˙QCQ˙R
14 1 3 4 5 6 lsatcv0 φ0˙CQ
15 14 biantrurd φQCQ˙R0˙CQQCQ˙R
16 8 13 15 3bitrd φQR0˙CQQCQ˙R
17 5 adantr φ0˙CQQCQ˙RWLVec
18 1 9 lsssn0 WLMod0˙LSubSpW
19 11 18 syl φ0˙LSubSpW
20 19 adantr φ0˙CQQCQ˙R0˙LSubSpW
21 12 adantr φ0˙CQQCQ˙RQLSubSpW
22 9 3 11 7 lsatlssel φRLSubSpW
23 9 2 lsmcl WLModQLSubSpWRLSubSpWQ˙RLSubSpW
24 11 12 22 23 syl3anc φQ˙RLSubSpW
25 24 adantr φ0˙CQQCQ˙RQ˙RLSubSpW
26 simprl φ0˙CQQCQ˙R0˙CQ
27 simprr φ0˙CQQCQ˙RQCQ˙R
28 9 4 17 20 21 25 26 27 lcvntr φ0˙CQQCQ˙R¬0˙CQ˙R
29 28 ex φ0˙CQQCQ˙R¬0˙CQ˙R
30 16 29 sylbid φQR¬0˙CQ˙R
31 30 necon4ad φ0˙CQ˙RQ=R
32 9 lsssssubg WLModLSubSpWSubGrpW
33 11 32 syl φLSubSpWSubGrpW
34 33 12 sseldd φQSubGrpW
35 2 lsmidm QSubGrpWQ˙Q=Q
36 34 35 syl φQ˙Q=Q
37 14 36 breqtrrd φ0˙CQ˙Q
38 oveq2 Q=RQ˙Q=Q˙R
39 38 breq2d Q=R0˙CQ˙Q0˙CQ˙R
40 37 39 syl5ibcom φQ=R0˙CQ˙R
41 31 40 impbid φ0˙CQ˙RQ=R