| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcv0eq.o |
|
| 2 |
|
lsatcv0eq.p |
|
| 3 |
|
lsatcv0eq.a |
|
| 4 |
|
lsatcv0eq.c |
|
| 5 |
|
lsatcv0eq.w |
|
| 6 |
|
lsatcv0eq.q |
|
| 7 |
|
lsatcv0eq.r |
|
| 8 |
1 3 5 6 7
|
lsatnem0 |
|
| 9 |
|
eqid |
|
| 10 |
|
lveclmod |
|
| 11 |
5 10
|
syl |
|
| 12 |
9 3 11 6
|
lsatlssel |
|
| 13 |
9 2 1 3 4 5 12 7
|
lcvp |
|
| 14 |
1 3 4 5 6
|
lsatcv0 |
|
| 15 |
14
|
biantrurd |
|
| 16 |
8 13 15
|
3bitrd |
|
| 17 |
5
|
adantr |
|
| 18 |
1 9
|
lsssn0 |
|
| 19 |
11 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
12
|
adantr |
|
| 22 |
9 3 11 7
|
lsatlssel |
|
| 23 |
9 2
|
lsmcl |
|
| 24 |
11 12 22 23
|
syl3anc |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simprl |
|
| 27 |
|
simprr |
|
| 28 |
9 4 17 20 21 25 26 27
|
lcvntr |
|
| 29 |
28
|
ex |
|
| 30 |
16 29
|
sylbid |
|
| 31 |
30
|
necon4ad |
|
| 32 |
9
|
lsssssubg |
|
| 33 |
11 32
|
syl |
|
| 34 |
33 12
|
sseldd |
|
| 35 |
2
|
lsmidm |
|
| 36 |
34 35
|
syl |
|
| 37 |
14 36
|
breqtrrd |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
breq2d |
|
| 40 |
37 39
|
syl5ibcom |
|
| 41 |
31 40
|
impbid |
|