Description: If the sum of two atoms cover the zero subspace, they are equal. ( atcv0eq analog.) (Contributed by NM, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsatcv0eq.o | |
|
lsatcv0eq.p | |
||
lsatcv0eq.a | |
||
lsatcv0eq.c | |
||
lsatcv0eq.w | |
||
lsatcv0eq.q | |
||
lsatcv0eq.r | |
||
Assertion | lsatcv0eq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcv0eq.o | |
|
2 | lsatcv0eq.p | |
|
3 | lsatcv0eq.a | |
|
4 | lsatcv0eq.c | |
|
5 | lsatcv0eq.w | |
|
6 | lsatcv0eq.q | |
|
7 | lsatcv0eq.r | |
|
8 | 1 3 5 6 7 | lsatnem0 | |
9 | eqid | |
|
10 | lveclmod | |
|
11 | 5 10 | syl | |
12 | 9 3 11 6 | lsatlssel | |
13 | 9 2 1 3 4 5 12 7 | lcvp | |
14 | 1 3 4 5 6 | lsatcv0 | |
15 | 14 | biantrurd | |
16 | 8 13 15 | 3bitrd | |
17 | 5 | adantr | |
18 | 1 9 | lsssn0 | |
19 | 11 18 | syl | |
20 | 19 | adantr | |
21 | 12 | adantr | |
22 | 9 3 11 7 | lsatlssel | |
23 | 9 2 | lsmcl | |
24 | 11 12 22 23 | syl3anc | |
25 | 24 | adantr | |
26 | simprl | |
|
27 | simprr | |
|
28 | 9 4 17 20 21 25 26 27 | lcvntr | |
29 | 28 | ex | |
30 | 16 29 | sylbid | |
31 | 30 | necon4ad | |
32 | 9 | lsssssubg | |
33 | 11 32 | syl | |
34 | 33 12 | sseldd | |
35 | 2 | lsmidm | |
36 | 34 35 | syl | |
37 | 14 36 | breqtrrd | |
38 | oveq2 | |
|
39 | 38 | breq2d | |
40 | 37 39 | syl5ibcom | |
41 | 31 40 | impbid | |