Metamath Proof Explorer


Theorem lsatcv1

Description: Two atoms covering the zero subspace are equal. ( atcv1 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcv1.o 0 ˙ = 0 W
lsatcv1.p ˙ = LSSum W
lsatcv1.s S = LSubSp W
lsatcv1.a A = LSAtoms W
lsatcv1.c C = L W
lsatcv1.w φ W LVec
lsatcv1.u φ U S
lsatcv1.q φ Q A
lsatcv1.r φ R A
lsatcv1.l φ U C Q ˙ R
Assertion lsatcv1 φ U = 0 ˙ Q = R

Proof

Step Hyp Ref Expression
1 lsatcv1.o 0 ˙ = 0 W
2 lsatcv1.p ˙ = LSSum W
3 lsatcv1.s S = LSubSp W
4 lsatcv1.a A = LSAtoms W
5 lsatcv1.c C = L W
6 lsatcv1.w φ W LVec
7 lsatcv1.u φ U S
8 lsatcv1.q φ Q A
9 lsatcv1.r φ R A
10 lsatcv1.l φ U C Q ˙ R
11 breq1 U = 0 ˙ U C Q ˙ R 0 ˙ C Q ˙ R
12 10 11 syl5ibcom φ U = 0 ˙ 0 ˙ C Q ˙ R
13 1 2 4 5 6 8 9 lsatcv0eq φ 0 ˙ C Q ˙ R Q = R
14 12 13 sylibd φ U = 0 ˙ Q = R
15 10 adantr φ Q = R U C Q ˙ R
16 6 adantr φ Q = R W LVec
17 7 adantr φ Q = R U S
18 oveq1 Q = R Q ˙ R = R ˙ R
19 lveclmod W LVec W LMod
20 6 19 syl φ W LMod
21 3 4 20 9 lsatlssel φ R S
22 3 lsssubg W LMod R S R SubGrp W
23 20 21 22 syl2anc φ R SubGrp W
24 2 lsmidm R SubGrp W R ˙ R = R
25 23 24 syl φ R ˙ R = R
26 18 25 sylan9eqr φ Q = R Q ˙ R = R
27 9 adantr φ Q = R R A
28 26 27 eqeltrd φ Q = R Q ˙ R A
29 1 3 4 5 16 17 28 lsatcveq0 φ Q = R U C Q ˙ R U = 0 ˙
30 15 29 mpbid φ Q = R U = 0 ˙
31 30 ex φ Q = R U = 0 ˙
32 14 31 impbid φ U = 0 ˙ Q = R