Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcvat.o |
|
2 |
|
lsatcvat.s |
|
3 |
|
lsatcvat.p |
|
4 |
|
lsatcvat.a |
|
5 |
|
lsatcvat.w |
|
6 |
|
lsatcvat.u |
|
7 |
|
lsatcvat.q |
|
8 |
|
lsatcvat.r |
|
9 |
|
lsatcvat.n |
|
10 |
|
lsatcvat.l |
|
11 |
|
lsatcvat.m |
|
12 |
|
lveclmod |
|
13 |
5 12
|
syl |
|
14 |
2 1 4 13 6 9
|
lssatomic |
|
15 |
|
eqid |
|
16 |
5
|
3ad2ant1 |
|
17 |
13
|
3ad2ant1 |
|
18 |
|
simp2 |
|
19 |
2 4 17 18
|
lsatlssel |
|
20 |
2 4 13 7
|
lsatlssel |
|
21 |
20
|
3ad2ant1 |
|
22 |
2 3
|
lsmcl |
|
23 |
17 21 19 22
|
syl3anc |
|
24 |
6
|
3ad2ant1 |
|
25 |
11
|
3ad2ant1 |
|
26 |
|
sseq1 |
|
27 |
26
|
biimpcd |
|
28 |
27
|
necon3bd |
|
29 |
28
|
3ad2ant3 |
|
30 |
25 29
|
mpd |
|
31 |
7
|
3ad2ant1 |
|
32 |
1 4 16 18 31
|
lsatnem0 |
|
33 |
30 32
|
mpbid |
|
34 |
2 3 1 4 15 16 19 31
|
lcvp |
|
35 |
33 34
|
mpbid |
|
36 |
|
lmodabl |
|
37 |
17 36
|
syl |
|
38 |
2
|
lsssssubg |
|
39 |
17 38
|
syl |
|
40 |
39 19
|
sseldd |
|
41 |
39 21
|
sseldd |
|
42 |
3
|
lsmcom |
|
43 |
37 40 41 42
|
syl3anc |
|
44 |
35 43
|
breqtrd |
|
45 |
|
simp3 |
|
46 |
10
|
3ad2ant1 |
|
47 |
3
|
lsmub1 |
|
48 |
41 40 47
|
syl2anc |
|
49 |
8
|
3ad2ant1 |
|
50 |
10
|
pssssd |
|
51 |
50
|
3ad2ant1 |
|
52 |
45 51
|
sstrd |
|
53 |
3 4 16 18 49 31 52 30
|
lsatexch1 |
|
54 |
2 4 13 8
|
lsatlssel |
|
55 |
54
|
3ad2ant1 |
|
56 |
39 55
|
sseldd |
|
57 |
39 23
|
sseldd |
|
58 |
3
|
lsmlub |
|
59 |
41 56 57 58
|
syl3anc |
|
60 |
48 53 59
|
mpbi2and |
|
61 |
46 60
|
psssstrd |
|
62 |
2 15 16 19 23 24 44 45 61
|
lcvnbtwn3 |
|
63 |
62 18
|
eqeltrd |
|
64 |
63
|
rexlimdv3a |
|
65 |
14 64
|
mpd |
|