| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatcvat.o |
|- .0. = ( 0g ` W ) |
| 2 |
|
lsatcvat.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lsatcvat.p |
|- .(+) = ( LSSum ` W ) |
| 4 |
|
lsatcvat.a |
|- A = ( LSAtoms ` W ) |
| 5 |
|
lsatcvat.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lsatcvat.u |
|- ( ph -> U e. S ) |
| 7 |
|
lsatcvat.q |
|- ( ph -> Q e. A ) |
| 8 |
|
lsatcvat.r |
|- ( ph -> R e. A ) |
| 9 |
|
lsatcvat.n |
|- ( ph -> U =/= { .0. } ) |
| 10 |
|
lsatcvat.l |
|- ( ph -> U C. ( Q .(+) R ) ) |
| 11 |
|
lsatcvat.m |
|- ( ph -> -. Q C_ U ) |
| 12 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 13 |
5 12
|
syl |
|- ( ph -> W e. LMod ) |
| 14 |
2 1 4 13 6 9
|
lssatomic |
|- ( ph -> E. x e. A x C_ U ) |
| 15 |
|
eqid |
|- (
|
| 16 |
5
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> W e. LVec ) |
| 17 |
13
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> W e. LMod ) |
| 18 |
|
simp2 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x e. A ) |
| 19 |
2 4 17 18
|
lsatlssel |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x e. S ) |
| 20 |
2 4 13 7
|
lsatlssel |
|- ( ph -> Q e. S ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> Q e. S ) |
| 22 |
2 3
|
lsmcl |
|- ( ( W e. LMod /\ Q e. S /\ x e. S ) -> ( Q .(+) x ) e. S ) |
| 23 |
17 21 19 22
|
syl3anc |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( Q .(+) x ) e. S ) |
| 24 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> U e. S ) |
| 25 |
11
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> -. Q C_ U ) |
| 26 |
|
sseq1 |
|- ( x = Q -> ( x C_ U <-> Q C_ U ) ) |
| 27 |
26
|
biimpcd |
|- ( x C_ U -> ( x = Q -> Q C_ U ) ) |
| 28 |
27
|
necon3bd |
|- ( x C_ U -> ( -. Q C_ U -> x =/= Q ) ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( -. Q C_ U -> x =/= Q ) ) |
| 30 |
25 29
|
mpd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x =/= Q ) |
| 31 |
7
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> Q e. A ) |
| 32 |
1 4 16 18 31
|
lsatnem0 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( x =/= Q <-> ( x i^i Q ) = { .0. } ) ) |
| 33 |
30 32
|
mpbid |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( x i^i Q ) = { .0. } ) |
| 34 |
2 3 1 4 15 16 19 31
|
lcvp |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( ( x i^i Q ) = { .0. } <-> x (
|
| 35 |
33 34
|
mpbid |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x (
|
| 36 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 37 |
17 36
|
syl |
|- ( ( ph /\ x e. A /\ x C_ U ) -> W e. Abel ) |
| 38 |
2
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| 39 |
17 38
|
syl |
|- ( ( ph /\ x e. A /\ x C_ U ) -> S C_ ( SubGrp ` W ) ) |
| 40 |
39 19
|
sseldd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x e. ( SubGrp ` W ) ) |
| 41 |
39 21
|
sseldd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> Q e. ( SubGrp ` W ) ) |
| 42 |
3
|
lsmcom |
|- ( ( W e. Abel /\ x e. ( SubGrp ` W ) /\ Q e. ( SubGrp ` W ) ) -> ( x .(+) Q ) = ( Q .(+) x ) ) |
| 43 |
37 40 41 42
|
syl3anc |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( x .(+) Q ) = ( Q .(+) x ) ) |
| 44 |
35 43
|
breqtrd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x (
|
| 45 |
|
simp3 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x C_ U ) |
| 46 |
10
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> U C. ( Q .(+) R ) ) |
| 47 |
3
|
lsmub1 |
|- ( ( Q e. ( SubGrp ` W ) /\ x e. ( SubGrp ` W ) ) -> Q C_ ( Q .(+) x ) ) |
| 48 |
41 40 47
|
syl2anc |
|- ( ( ph /\ x e. A /\ x C_ U ) -> Q C_ ( Q .(+) x ) ) |
| 49 |
8
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> R e. A ) |
| 50 |
10
|
pssssd |
|- ( ph -> U C_ ( Q .(+) R ) ) |
| 51 |
50
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> U C_ ( Q .(+) R ) ) |
| 52 |
45 51
|
sstrd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> x C_ ( Q .(+) R ) ) |
| 53 |
3 4 16 18 49 31 52 30
|
lsatexch1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> R C_ ( Q .(+) x ) ) |
| 54 |
2 4 13 8
|
lsatlssel |
|- ( ph -> R e. S ) |
| 55 |
54
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> R e. S ) |
| 56 |
39 55
|
sseldd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> R e. ( SubGrp ` W ) ) |
| 57 |
39 23
|
sseldd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( Q .(+) x ) e. ( SubGrp ` W ) ) |
| 58 |
3
|
lsmlub |
|- ( ( Q e. ( SubGrp ` W ) /\ R e. ( SubGrp ` W ) /\ ( Q .(+) x ) e. ( SubGrp ` W ) ) -> ( ( Q C_ ( Q .(+) x ) /\ R C_ ( Q .(+) x ) ) <-> ( Q .(+) R ) C_ ( Q .(+) x ) ) ) |
| 59 |
41 56 57 58
|
syl3anc |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( ( Q C_ ( Q .(+) x ) /\ R C_ ( Q .(+) x ) ) <-> ( Q .(+) R ) C_ ( Q .(+) x ) ) ) |
| 60 |
48 53 59
|
mpbi2and |
|- ( ( ph /\ x e. A /\ x C_ U ) -> ( Q .(+) R ) C_ ( Q .(+) x ) ) |
| 61 |
46 60
|
psssstrd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> U C. ( Q .(+) x ) ) |
| 62 |
2 15 16 19 23 24 44 45 61
|
lcvnbtwn3 |
|- ( ( ph /\ x e. A /\ x C_ U ) -> U = x ) |
| 63 |
62 18
|
eqeltrd |
|- ( ( ph /\ x e. A /\ x C_ U ) -> U e. A ) |
| 64 |
63
|
rexlimdv3a |
|- ( ph -> ( E. x e. A x C_ U -> U e. A ) ) |
| 65 |
14 64
|
mpd |
|- ( ph -> U e. A ) |