Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcv1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsatcv1.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
3 |
|
lsatcv1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
4 |
|
lsatcv1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
5 |
|
lsatcv1.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
6 |
|
lsatcv1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
lsatcv1.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
8 |
|
lsatcv1.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
9 |
|
lsatcv1.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
10 |
|
lsatcv1.l |
⊢ ( 𝜑 → 𝑈 𝐶 ( 𝑄 ⊕ 𝑅 ) ) |
11 |
|
breq1 |
⊢ ( 𝑈 = { 0 } → ( 𝑈 𝐶 ( 𝑄 ⊕ 𝑅 ) ↔ { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) |
12 |
10 11
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑈 = { 0 } → { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) |
13 |
1 2 4 5 6 8 9
|
lsatcv0eq |
⊢ ( 𝜑 → ( { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ↔ 𝑄 = 𝑅 ) ) |
14 |
12 13
|
sylibd |
⊢ ( 𝜑 → ( 𝑈 = { 0 } → 𝑄 = 𝑅 ) ) |
15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → 𝑈 𝐶 ( 𝑄 ⊕ 𝑅 ) ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → 𝑊 ∈ LVec ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → 𝑈 ∈ 𝑆 ) |
18 |
|
oveq1 |
⊢ ( 𝑄 = 𝑅 → ( 𝑄 ⊕ 𝑅 ) = ( 𝑅 ⊕ 𝑅 ) ) |
19 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
20 |
6 19
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
21 |
3 4 20 9
|
lsatlssel |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
22 |
3
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝑆 ) → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
23 |
20 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ ( SubGrp ‘ 𝑊 ) ) |
24 |
2
|
lsmidm |
⊢ ( 𝑅 ∈ ( SubGrp ‘ 𝑊 ) → ( 𝑅 ⊕ 𝑅 ) = 𝑅 ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( 𝑅 ⊕ 𝑅 ) = 𝑅 ) |
26 |
18 25
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → ( 𝑄 ⊕ 𝑅 ) = 𝑅 ) |
27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → 𝑅 ∈ 𝐴 ) |
28 |
26 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → ( 𝑄 ⊕ 𝑅 ) ∈ 𝐴 ) |
29 |
1 3 4 5 16 17 28
|
lsatcveq0 |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → ( 𝑈 𝐶 ( 𝑄 ⊕ 𝑅 ) ↔ 𝑈 = { 0 } ) ) |
30 |
15 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑄 = 𝑅 ) → 𝑈 = { 0 } ) |
31 |
30
|
ex |
⊢ ( 𝜑 → ( 𝑄 = 𝑅 → 𝑈 = { 0 } ) ) |
32 |
14 31
|
impbid |
⊢ ( 𝜑 → ( 𝑈 = { 0 } ↔ 𝑄 = 𝑅 ) ) |