Step |
Hyp |
Ref |
Expression |
1 |
|
lsatcv0eq.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsatcv0eq.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
3 |
|
lsatcv0eq.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
4 |
|
lsatcv0eq.c |
⊢ 𝐶 = ( ⋖L ‘ 𝑊 ) |
5 |
|
lsatcv0eq.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lsatcv0eq.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
7 |
|
lsatcv0eq.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
8 |
1 3 5 6 7
|
lsatnem0 |
⊢ ( 𝜑 → ( 𝑄 ≠ 𝑅 ↔ ( 𝑄 ∩ 𝑅 ) = { 0 } ) ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
12 |
9 3 11 6
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) |
13 |
9 2 1 3 4 5 12 7
|
lcvp |
⊢ ( 𝜑 → ( ( 𝑄 ∩ 𝑅 ) = { 0 } ↔ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) |
14 |
1 3 4 5 6
|
lsatcv0 |
⊢ ( 𝜑 → { 0 } 𝐶 𝑄 ) |
15 |
14
|
biantrurd |
⊢ ( 𝜑 → ( 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ↔ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) ) |
16 |
8 13 15
|
3bitrd |
⊢ ( 𝜑 → ( 𝑄 ≠ 𝑅 ↔ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) → 𝑊 ∈ LVec ) |
18 |
1 9
|
lsssn0 |
⊢ ( 𝑊 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑊 ) ) |
19 |
11 18
|
syl |
⊢ ( 𝜑 → { 0 } ∈ ( LSubSp ‘ 𝑊 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) → { 0 } ∈ ( LSubSp ‘ 𝑊 ) ) |
21 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) → 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) |
22 |
9 3 11 7
|
lsatlssel |
⊢ ( 𝜑 → 𝑅 ∈ ( LSubSp ‘ 𝑊 ) ) |
23 |
9 2
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑅 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
24 |
11 12 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑅 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) → { 0 } 𝐶 𝑄 ) |
27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) → 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) |
28 |
9 4 17 20 21 25 26 27
|
lcvntr |
⊢ ( ( 𝜑 ∧ ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) → ¬ { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ) |
29 |
28
|
ex |
⊢ ( 𝜑 → ( ( { 0 } 𝐶 𝑄 ∧ 𝑄 𝐶 ( 𝑄 ⊕ 𝑅 ) ) → ¬ { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) |
30 |
16 29
|
sylbid |
⊢ ( 𝜑 → ( 𝑄 ≠ 𝑅 → ¬ { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) |
31 |
30
|
necon4ad |
⊢ ( 𝜑 → ( { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) → 𝑄 = 𝑅 ) ) |
32 |
9
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
33 |
11 32
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
34 |
33 12
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑊 ) ) |
35 |
2
|
lsmidm |
⊢ ( 𝑄 ∈ ( SubGrp ‘ 𝑊 ) → ( 𝑄 ⊕ 𝑄 ) = 𝑄 ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → ( 𝑄 ⊕ 𝑄 ) = 𝑄 ) |
37 |
14 36
|
breqtrrd |
⊢ ( 𝜑 → { 0 } 𝐶 ( 𝑄 ⊕ 𝑄 ) ) |
38 |
|
oveq2 |
⊢ ( 𝑄 = 𝑅 → ( 𝑄 ⊕ 𝑄 ) = ( 𝑄 ⊕ 𝑅 ) ) |
39 |
38
|
breq2d |
⊢ ( 𝑄 = 𝑅 → ( { 0 } 𝐶 ( 𝑄 ⊕ 𝑄 ) ↔ { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) |
40 |
37 39
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑄 = 𝑅 → { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ) ) |
41 |
31 40
|
impbid |
⊢ ( 𝜑 → ( { 0 } 𝐶 ( 𝑄 ⊕ 𝑅 ) ↔ 𝑄 = 𝑅 ) ) |