Metamath Proof Explorer


Theorem dochkrshp4

Description: Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses dochkrshp3.h 𝐻 = ( LHyp ‘ 𝐾 )
dochkrshp3.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochkrshp3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochkrshp3.v 𝑉 = ( Base ‘ 𝑈 )
dochkrshp3.f 𝐹 = ( LFnl ‘ 𝑈 )
dochkrshp3.l 𝐿 = ( LKer ‘ 𝑈 )
dochkrshp3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochkrshp3.g ( 𝜑𝐺𝐹 )
Assertion dochkrshp4 ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 dochkrshp3.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochkrshp3.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochkrshp3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochkrshp3.v 𝑉 = ( Base ‘ 𝑈 )
5 dochkrshp3.f 𝐹 = ( LFnl ‘ 𝑈 )
6 dochkrshp3.l 𝐿 = ( LKer ‘ 𝑈 )
7 dochkrshp3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 dochkrshp3.g ( 𝜑𝐺𝐹 )
9 df-ne ( ( 𝐿𝐺 ) ≠ 𝑉 ↔ ¬ ( 𝐿𝐺 ) = 𝑉 )
10 1 2 3 4 5 6 7 8 dochkrshp3 ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) ) )
11 10 biimprd ( 𝜑 → ( ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ) )
12 11 expdimp ( ( 𝜑 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) → ( ( 𝐿𝐺 ) ≠ 𝑉 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ) )
13 9 12 syl5bir ( ( 𝜑 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) → ( ¬ ( 𝐿𝐺 ) = 𝑉 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ) )
14 13 orrd ( ( 𝜑 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) → ( ( 𝐿𝐺 ) = 𝑉 ∨ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ) )
15 14 orcomd ( ( 𝜑 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) )
16 15 ex ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )
17 simpl ( ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ∧ ( 𝐿𝐺 ) ≠ 𝑉 ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )
18 10 17 syl6bi ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
19 1 3 2 4 7 dochoc1 ( 𝜑 → ( ‘ ( 𝑉 ) ) = 𝑉 )
20 2fveq3 ( ( 𝐿𝐺 ) = 𝑉 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( ‘ ( 𝑉 ) ) )
21 id ( ( 𝐿𝐺 ) = 𝑉 → ( 𝐿𝐺 ) = 𝑉 )
22 20 21 eqeq12d ( ( 𝐿𝐺 ) = 𝑉 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ( ‘ ( 𝑉 ) ) = 𝑉 ) )
23 19 22 syl5ibrcom ( 𝜑 → ( ( 𝐿𝐺 ) = 𝑉 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
24 18 23 jaod ( 𝜑 → ( ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
25 16 24 impbid ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )