Step |
Hyp |
Ref |
Expression |
1 |
|
dochkrshp3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochkrshp3.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochkrshp3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochkrshp3.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochkrshp3.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
dochkrshp3.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
dochkrshp3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dochkrshp3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
df-ne |
⊢ ( ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ↔ ¬ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
10 |
1 2 3 4 5 6 7 8
|
dochkrshp3 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) ) |
11 |
10
|
biimprd |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) ) |
12 |
11
|
expdimp |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) → ( ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) ) |
13 |
9 12
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) → ( ¬ ( 𝐿 ‘ 𝐺 ) = 𝑉 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) ) |
14 |
13
|
orrd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ∨ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) ) |
15 |
14
|
orcomd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
17 |
|
simpl |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
18 |
10 17
|
syl6bi |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
19 |
1 3 2 4 7
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
20 |
|
2fveq3 |
⊢ ( ( 𝐿 ‘ 𝐺 ) = 𝑉 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) ) |
21 |
|
id |
⊢ ( ( 𝐿 ‘ 𝐺 ) = 𝑉 → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
22 |
20 21
|
eqeq12d |
⊢ ( ( 𝐿 ‘ 𝐺 ) = 𝑉 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) ) |
23 |
19 22
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
24 |
18 23
|
jaod |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
25 |
16 24
|
impbid |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |