Step |
Hyp |
Ref |
Expression |
1 |
|
dochkrshp3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochkrshp3.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochkrshp3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochkrshp3.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochkrshp3.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
dochkrshp3.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
dochkrshp3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dochkrshp3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
10 |
1 2 3 4 9 5 6 7 8
|
dochkrshp2 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ) ) |
11 |
1 3 7
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
12 |
4 9 5 6 11 8
|
lkrshp4 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ↔ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ) ) |
14 |
10 13
|
bitr4d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) ) ) |