Step |
Hyp |
Ref |
Expression |
1 |
|
dochkrshp3.h |
|- H = ( LHyp ` K ) |
2 |
|
dochkrshp3.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochkrshp3.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochkrshp3.v |
|- V = ( Base ` U ) |
5 |
|
dochkrshp3.f |
|- F = ( LFnl ` U ) |
6 |
|
dochkrshp3.l |
|- L = ( LKer ` U ) |
7 |
|
dochkrshp3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
dochkrshp3.g |
|- ( ph -> G e. F ) |
9 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
10 |
1 2 3 4 9 5 6 7 8
|
dochkrshp2 |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( L ` G ) e. ( LSHyp ` U ) ) ) ) |
11 |
1 3 7
|
dvhlvec |
|- ( ph -> U e. LVec ) |
12 |
4 9 5 6 11 8
|
lkrshp4 |
|- ( ph -> ( ( L ` G ) =/= V <-> ( L ` G ) e. ( LSHyp ` U ) ) ) |
13 |
12
|
anbi2d |
|- ( ph -> ( ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( L ` G ) =/= V ) <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( L ` G ) e. ( LSHyp ` U ) ) ) ) |
14 |
10 13
|
bitr4d |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( L ` G ) =/= V ) ) ) |