Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfl1.c | ⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } | |
lcfl1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | ||
Assertion | lcfl1 | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl1.c | ⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } | |
2 | lcfl1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | |
3 | 1 | lcfl1lem | ⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
4 | 2 | biantrurd | ⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) ) |
5 | 3 4 | bitr4id | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |