Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl6lem.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfl6lem.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfl6lem.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfl6lem.v |
|- V = ( Base ` U ) |
5 |
|
lcfl6lem.a |
|- .+ = ( +g ` U ) |
6 |
|
lcfl6lem.t |
|- .x. = ( .s ` U ) |
7 |
|
lcfl6lem.s |
|- S = ( Scalar ` U ) |
8 |
|
lcfl6lem.i |
|- .1. = ( 1r ` S ) |
9 |
|
lcfl6lem.r |
|- R = ( Base ` S ) |
10 |
|
lcfl6lem.z |
|- .0. = ( 0g ` U ) |
11 |
|
lcfl6lem.f |
|- F = ( LFnl ` U ) |
12 |
|
lcfl6lem.l |
|- L = ( LKer ` U ) |
13 |
|
lcfl6lem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
14 |
|
lcfl6lem.g |
|- ( ph -> G e. F ) |
15 |
|
lcfl6lem.x |
|- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
16 |
|
lcfl6lem.y |
|- ( ph -> ( G ` X ) = .1. ) |
17 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
18 |
1 3 13
|
dvhlvec |
|- ( ph -> U e. LVec ) |
19 |
1 3 13
|
dvhlmod |
|- ( ph -> U e. LMod ) |
20 |
4 11 12 19 14
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
21 |
1 3 4 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ V ) -> ( ._|_ ` ( L ` G ) ) C_ V ) |
22 |
13 20 21
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` G ) ) C_ V ) |
23 |
15
|
eldifad |
|- ( ph -> X e. ( ._|_ ` ( L ` G ) ) ) |
24 |
22 23
|
sseldd |
|- ( ph -> X e. V ) |
25 |
|
eqid |
|- ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) |
26 |
|
eldifsni |
|- ( X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) -> X =/= .0. ) |
27 |
15 26
|
syl |
|- ( ph -> X =/= .0. ) |
28 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
29 |
24 27 28
|
sylanbrc |
|- ( ph -> X e. ( V \ { .0. } ) ) |
30 |
1 2 3 4 10 5 6 11 7 9 25 13 29
|
dochflcl |
|- ( ph -> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) e. F ) |
31 |
1 2 3 4 10 11 12 13 14 15
|
dochsnkr |
|- ( ph -> ( L ` G ) = ( ._|_ ` { X } ) ) |
32 |
1 2 3 4 10 5 6 12 7 9 25 13 29
|
dochsnkr2 |
|- ( ph -> ( L ` ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ) = ( ._|_ ` { X } ) ) |
33 |
31 32
|
eqtr4d |
|- ( ph -> ( L ` G ) = ( L ` ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ) ) |
34 |
1 2 3 4 5 6 10 7 9 8 13 29 25
|
dochfl1 |
|- ( ph -> ( ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ` X ) = .1. ) |
35 |
16 34
|
eqtr4d |
|- ( ph -> ( G ` X ) = ( ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ` X ) ) |
36 |
1 2 3 4 7 17 10 11 12 13 14 15
|
dochfln0 |
|- ( ph -> ( G ` X ) =/= ( 0g ` S ) ) |
37 |
4 7 9 17 11 12 18 24 14 30 33 35 36
|
eqlkr3 |
|- ( ph -> G = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ) |