| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfl6lem.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcfl6lem.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcfl6lem.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcfl6lem.v |
|- V = ( Base ` U ) |
| 5 |
|
lcfl6lem.a |
|- .+ = ( +g ` U ) |
| 6 |
|
lcfl6lem.t |
|- .x. = ( .s ` U ) |
| 7 |
|
lcfl6lem.s |
|- S = ( Scalar ` U ) |
| 8 |
|
lcfl6lem.i |
|- .1. = ( 1r ` S ) |
| 9 |
|
lcfl6lem.r |
|- R = ( Base ` S ) |
| 10 |
|
lcfl6lem.z |
|- .0. = ( 0g ` U ) |
| 11 |
|
lcfl6lem.f |
|- F = ( LFnl ` U ) |
| 12 |
|
lcfl6lem.l |
|- L = ( LKer ` U ) |
| 13 |
|
lcfl6lem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
lcfl6lem.g |
|- ( ph -> G e. F ) |
| 15 |
|
lcfl6lem.x |
|- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
| 16 |
|
lcfl6lem.y |
|- ( ph -> ( G ` X ) = .1. ) |
| 17 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 18 |
1 3 13
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 19 |
1 3 13
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 20 |
4 11 12 19 14
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
| 21 |
1 3 4 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ V ) -> ( ._|_ ` ( L ` G ) ) C_ V ) |
| 22 |
13 20 21
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` G ) ) C_ V ) |
| 23 |
15
|
eldifad |
|- ( ph -> X e. ( ._|_ ` ( L ` G ) ) ) |
| 24 |
22 23
|
sseldd |
|- ( ph -> X e. V ) |
| 25 |
|
eqid |
|- ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) |
| 26 |
|
eldifsni |
|- ( X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) -> X =/= .0. ) |
| 27 |
15 26
|
syl |
|- ( ph -> X =/= .0. ) |
| 28 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
| 29 |
24 27 28
|
sylanbrc |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 30 |
1 2 3 4 10 5 6 11 7 9 25 13 29
|
dochflcl |
|- ( ph -> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) e. F ) |
| 31 |
1 2 3 4 10 11 12 13 14 15
|
dochsnkr |
|- ( ph -> ( L ` G ) = ( ._|_ ` { X } ) ) |
| 32 |
1 2 3 4 10 5 6 12 7 9 25 13 29
|
dochsnkr2 |
|- ( ph -> ( L ` ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ) = ( ._|_ ` { X } ) ) |
| 33 |
31 32
|
eqtr4d |
|- ( ph -> ( L ` G ) = ( L ` ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ) ) |
| 34 |
1 2 3 4 5 6 10 7 9 8 13 29 25
|
dochfl1 |
|- ( ph -> ( ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ` X ) = .1. ) |
| 35 |
16 34
|
eqtr4d |
|- ( ph -> ( G ` X ) = ( ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ` X ) ) |
| 36 |
1 2 3 4 7 17 10 11 12 13 14 15
|
dochfln0 |
|- ( ph -> ( G ` X ) =/= ( 0g ` S ) ) |
| 37 |
4 7 9 17 11 12 18 24 14 30 33 35 36
|
eqlkr3 |
|- ( ph -> G = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) ) |