| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfl7lem.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcfl7lem.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcfl7lem.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcfl7lem.v |
|- V = ( Base ` U ) |
| 5 |
|
lcfl7lem.a |
|- .+ = ( +g ` U ) |
| 6 |
|
lcfl7lem.t |
|- .x. = ( .s ` U ) |
| 7 |
|
lcfl7lem.s |
|- S = ( Scalar ` U ) |
| 8 |
|
lcfl7lem.r |
|- R = ( Base ` S ) |
| 9 |
|
lcfl7lem.z |
|- .0. = ( 0g ` U ) |
| 10 |
|
lcfl7lem.f |
|- F = ( LFnl ` U ) |
| 11 |
|
lcfl7lem.l |
|- L = ( LKer ` U ) |
| 12 |
|
lcfl7lem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
lcfl7lem.g |
|- G = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) |
| 14 |
|
lcfl7lem.j |
|- J = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { Y } ) v = ( w .+ ( k .x. Y ) ) ) ) |
| 15 |
|
lcfl7lem.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 16 |
|
lcfl7lem.x2 |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 17 |
|
lcfl7lem.gj |
|- ( ph -> G = J ) |
| 18 |
1 2 3 4 9 5 6 11 7 8 13 12 15
|
dochsnkr2cl |
|- ( ph -> X e. ( ( ._|_ ` ( L ` G ) ) \ { .0. } ) ) |
| 19 |
18
|
eldifad |
|- ( ph -> X e. ( ._|_ ` ( L ` G ) ) ) |
| 20 |
17
|
fveq2d |
|- ( ph -> ( L ` G ) = ( L ` J ) ) |
| 21 |
1 2 3 4 9 5 6 11 7 8 14 12 16
|
dochsnkr2 |
|- ( ph -> ( L ` J ) = ( ._|_ ` { Y } ) ) |
| 22 |
20 21
|
eqtrd |
|- ( ph -> ( L ` G ) = ( ._|_ ` { Y } ) ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` G ) ) = ( ._|_ ` ( ._|_ ` { Y } ) ) ) |
| 24 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 25 |
16
|
eldifad |
|- ( ph -> Y e. V ) |
| 26 |
25
|
snssd |
|- ( ph -> { Y } C_ V ) |
| 27 |
1 3 2 4 24 12 26
|
dochocsp |
|- ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { Y } ) ) = ( ._|_ ` { Y } ) ) |
| 28 |
27
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ( LSpan ` U ) ` { Y } ) ) ) = ( ._|_ ` ( ._|_ ` { Y } ) ) ) |
| 29 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 30 |
1 3 4 24 29
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. V ) -> ( ( LSpan ` U ) ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 31 |
12 25 30
|
syl2anc |
|- ( ph -> ( ( LSpan ` U ) ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 32 |
1 29 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( LSpan ` U ) ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ( LSpan ` U ) ` { Y } ) ) ) = ( ( LSpan ` U ) ` { Y } ) ) |
| 33 |
12 31 32
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ( LSpan ` U ) ` { Y } ) ) ) = ( ( LSpan ` U ) ` { Y } ) ) |
| 34 |
23 28 33
|
3eqtr2d |
|- ( ph -> ( ._|_ ` ( L ` G ) ) = ( ( LSpan ` U ) ` { Y } ) ) |
| 35 |
19 34
|
eleqtrd |
|- ( ph -> X e. ( ( LSpan ` U ) ` { Y } ) ) |
| 36 |
1 3 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 37 |
7 8 4 6 24
|
ellspsn |
|- ( ( U e. LMod /\ Y e. V ) -> ( X e. ( ( LSpan ` U ) ` { Y } ) <-> E. s e. R X = ( s .x. Y ) ) ) |
| 38 |
36 25 37
|
syl2anc |
|- ( ph -> ( X e. ( ( LSpan ` U ) ` { Y } ) <-> E. s e. R X = ( s .x. Y ) ) ) |
| 39 |
35 38
|
mpbid |
|- ( ph -> E. s e. R X = ( s .x. Y ) ) |
| 40 |
|
simp3 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> X = ( s .x. Y ) ) |
| 41 |
|
fveq2 |
|- ( X = ( s .x. Y ) -> ( G ` X ) = ( G ` ( s .x. Y ) ) ) |
| 42 |
41
|
3ad2ant3 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( G ` X ) = ( G ` ( s .x. Y ) ) ) |
| 43 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 44 |
1 2 3 4 5 6 9 7 8 43 12 16 14
|
dochfl1 |
|- ( ph -> ( J ` Y ) = ( 1r ` S ) ) |
| 45 |
17
|
fveq1d |
|- ( ph -> ( G ` Y ) = ( J ` Y ) ) |
| 46 |
1 2 3 4 5 6 9 7 8 43 12 15 13
|
dochfl1 |
|- ( ph -> ( G ` X ) = ( 1r ` S ) ) |
| 47 |
44 45 46
|
3eqtr4rd |
|- ( ph -> ( G ` X ) = ( G ` Y ) ) |
| 48 |
47
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( G ` X ) = ( G ` Y ) ) |
| 49 |
36
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> U e. LMod ) |
| 50 |
1 2 3 4 9 5 6 10 7 8 13 12 15
|
dochflcl |
|- ( ph -> G e. F ) |
| 51 |
50
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> G e. F ) |
| 52 |
|
simp2 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> s e. R ) |
| 53 |
25
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> Y e. V ) |
| 54 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 55 |
7 8 54 4 6 10
|
lflmul |
|- ( ( U e. LMod /\ G e. F /\ ( s e. R /\ Y e. V ) ) -> ( G ` ( s .x. Y ) ) = ( s ( .r ` S ) ( G ` Y ) ) ) |
| 56 |
49 51 52 53 55
|
syl112anc |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( G ` ( s .x. Y ) ) = ( s ( .r ` S ) ( G ` Y ) ) ) |
| 57 |
42 48 56
|
3eqtr3d |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( G ` Y ) = ( s ( .r ` S ) ( G ` Y ) ) ) |
| 58 |
57
|
oveq1d |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) = ( ( s ( .r ` S ) ( G ` Y ) ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) ) |
| 59 |
7
|
lmodring |
|- ( U e. LMod -> S e. Ring ) |
| 60 |
36 59
|
syl |
|- ( ph -> S e. Ring ) |
| 61 |
60
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> S e. Ring ) |
| 62 |
7 8 4 10
|
lflcl |
|- ( ( U e. LMod /\ G e. F /\ Y e. V ) -> ( G ` Y ) e. R ) |
| 63 |
36 50 25 62
|
syl3anc |
|- ( ph -> ( G ` Y ) e. R ) |
| 64 |
63
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( G ` Y ) e. R ) |
| 65 |
1 3 12
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 66 |
7
|
lvecdrng |
|- ( U e. LVec -> S e. DivRing ) |
| 67 |
65 66
|
syl |
|- ( ph -> S e. DivRing ) |
| 68 |
45 44
|
eqtrd |
|- ( ph -> ( G ` Y ) = ( 1r ` S ) ) |
| 69 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 70 |
69 43
|
drngunz |
|- ( S e. DivRing -> ( 1r ` S ) =/= ( 0g ` S ) ) |
| 71 |
67 70
|
syl |
|- ( ph -> ( 1r ` S ) =/= ( 0g ` S ) ) |
| 72 |
68 71
|
eqnetrd |
|- ( ph -> ( G ` Y ) =/= ( 0g ` S ) ) |
| 73 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
| 74 |
8 69 73
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( G ` Y ) e. R /\ ( G ` Y ) =/= ( 0g ` S ) ) -> ( ( invr ` S ) ` ( G ` Y ) ) e. R ) |
| 75 |
67 63 72 74
|
syl3anc |
|- ( ph -> ( ( invr ` S ) ` ( G ` Y ) ) e. R ) |
| 76 |
75
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( ( invr ` S ) ` ( G ` Y ) ) e. R ) |
| 77 |
8 54
|
ringass |
|- ( ( S e. Ring /\ ( s e. R /\ ( G ` Y ) e. R /\ ( ( invr ` S ) ` ( G ` Y ) ) e. R ) ) -> ( ( s ( .r ` S ) ( G ` Y ) ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) = ( s ( .r ` S ) ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) ) ) |
| 78 |
61 52 64 76 77
|
syl13anc |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( ( s ( .r ` S ) ( G ` Y ) ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) = ( s ( .r ` S ) ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) ) ) |
| 79 |
8 69 54 43 73
|
drnginvrr |
|- ( ( S e. DivRing /\ ( G ` Y ) e. R /\ ( G ` Y ) =/= ( 0g ` S ) ) -> ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) = ( 1r ` S ) ) |
| 80 |
67 63 72 79
|
syl3anc |
|- ( ph -> ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) = ( 1r ` S ) ) |
| 81 |
80
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) = ( 1r ` S ) ) |
| 82 |
81
|
oveq2d |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( s ( .r ` S ) ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) ) = ( s ( .r ` S ) ( 1r ` S ) ) ) |
| 83 |
58 78 82
|
3eqtrrd |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( s ( .r ` S ) ( 1r ` S ) ) = ( ( G ` Y ) ( .r ` S ) ( ( invr ` S ) ` ( G ` Y ) ) ) ) |
| 84 |
8 54 43
|
ringridm |
|- ( ( S e. Ring /\ s e. R ) -> ( s ( .r ` S ) ( 1r ` S ) ) = s ) |
| 85 |
61 52 84
|
syl2anc |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( s ( .r ` S ) ( 1r ` S ) ) = s ) |
| 86 |
83 85 81
|
3eqtr3d |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> s = ( 1r ` S ) ) |
| 87 |
|
oveq1 |
|- ( s = ( 1r ` S ) -> ( s .x. Y ) = ( ( 1r ` S ) .x. Y ) ) |
| 88 |
4 7 6 43
|
lmodvs1 |
|- ( ( U e. LMod /\ Y e. V ) -> ( ( 1r ` S ) .x. Y ) = Y ) |
| 89 |
36 25 88
|
syl2anc |
|- ( ph -> ( ( 1r ` S ) .x. Y ) = Y ) |
| 90 |
89
|
3ad2ant1 |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( ( 1r ` S ) .x. Y ) = Y ) |
| 91 |
87 90
|
sylan9eqr |
|- ( ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) /\ s = ( 1r ` S ) ) -> ( s .x. Y ) = Y ) |
| 92 |
86 91
|
mpdan |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> ( s .x. Y ) = Y ) |
| 93 |
40 92
|
eqtrd |
|- ( ( ph /\ s e. R /\ X = ( s .x. Y ) ) -> X = Y ) |
| 94 |
93
|
rexlimdv3a |
|- ( ph -> ( E. s e. R X = ( s .x. Y ) -> X = Y ) ) |
| 95 |
39 94
|
mpd |
|- ( ph -> X = Y ) |