Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl7lem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl7lem.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl7lem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl7lem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl7lem.a |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcfl7lem.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
lcfl7lem.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
8 |
|
lcfl7lem.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
9 |
|
lcfl7lem.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
10 |
|
lcfl7lem.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lcfl7lem.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
12 |
|
lcfl7lem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
lcfl7lem.g |
⊢ 𝐺 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
14 |
|
lcfl7lem.j |
⊢ 𝐽 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑌 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑌 ) ) ) ) |
15 |
|
lcfl7lem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
16 |
|
lcfl7lem.x2 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
lcfl7lem.gj |
⊢ ( 𝜑 → 𝐺 = 𝐽 ) |
18 |
1 2 3 4 9 5 6 11 7 8 13 12 15
|
dochsnkr2cl |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∖ { 0 } ) ) |
19 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
20 |
17
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐽 ) ) |
21 |
1 2 3 4 9 5 6 11 7 8 14 12 16
|
dochsnkr2 |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐽 ) = ( ⊥ ‘ { 𝑌 } ) ) |
22 |
20 21
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑌 } ) ) ) |
24 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
25 |
16
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
26 |
25
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
27 |
1 3 2 4 24 12 26
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑌 } ) ) ) |
29 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
30 |
1 3 4 24 29
|
dihlsprn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
31 |
12 25 30
|
syl2anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
32 |
1 29 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) |
33 |
12 31 32
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) |
34 |
23 28 33
|
3eqtr2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) |
35 |
19 34
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) |
36 |
1 3 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
37 |
7 8 4 6 24
|
lspsnel |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ↔ ∃ 𝑠 ∈ 𝑅 𝑋 = ( 𝑠 · 𝑌 ) ) ) |
38 |
36 25 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ↔ ∃ 𝑠 ∈ 𝑅 𝑋 = ( 𝑠 · 𝑌 ) ) ) |
39 |
35 38
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝑅 𝑋 = ( 𝑠 · 𝑌 ) ) |
40 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑋 = ( 𝑠 · 𝑌 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑋 = ( 𝑠 · 𝑌 ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) ) |
43 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
44 |
1 2 3 4 5 6 9 7 8 43 12 16 14
|
dochfl1 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑌 ) = ( 1r ‘ 𝑆 ) ) |
45 |
17
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ( 𝐽 ‘ 𝑌 ) ) |
46 |
1 2 3 4 5 6 9 7 8 43 12 15 13
|
dochfl1 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
47 |
44 45 46
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) |
48 |
47
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) |
49 |
36
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑈 ∈ LMod ) |
50 |
1 2 3 4 9 5 6 10 7 8 13 12 15
|
dochflcl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
51 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝐺 ∈ 𝐹 ) |
52 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑠 ∈ 𝑅 ) |
53 |
25
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑌 ∈ 𝑉 ) |
54 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
55 |
7 8 54 4 6 10
|
lflmul |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑠 ∈ 𝑅 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) = ( 𝑠 ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑌 ) ) ) |
56 |
49 51 52 53 55
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) = ( 𝑠 ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑌 ) ) ) |
57 |
42 48 56
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺 ‘ 𝑌 ) = ( 𝑠 ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑌 ) ) ) |
58 |
57
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( ( 𝑠 ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑌 ) ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
59 |
7
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑆 ∈ Ring ) |
60 |
36 59
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
61 |
60
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑆 ∈ Ring ) |
62 |
7 8 4 10
|
lflcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑌 ) ∈ 𝑅 ) |
63 |
36 50 25 62
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ 𝑅 ) |
64 |
63
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺 ‘ 𝑌 ) ∈ 𝑅 ) |
65 |
1 3 12
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
66 |
7
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing ) |
67 |
65 66
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
68 |
45 44
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ( 1r ‘ 𝑆 ) ) |
69 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
70 |
69 43
|
drngunz |
⊢ ( 𝑆 ∈ DivRing → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
71 |
67 70
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
72 |
68 71
|
eqnetrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ≠ ( 0g ‘ 𝑆 ) ) |
73 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
74 |
8 69 73
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑌 ) ≠ ( 0g ‘ 𝑆 ) ) → ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝑅 ) |
75 |
67 63 72 74
|
syl3anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝑅 ) |
76 |
75
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝑅 ) |
77 |
8 54
|
ringass |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑠 ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝑅 ∧ ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ∈ 𝑅 ) ) → ( ( 𝑠 ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑌 ) ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝑠 ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
78 |
61 52 64 76 77
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 𝑠 ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑌 ) ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 𝑠 ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
79 |
8 69 54 43 73
|
drnginvrr |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑌 ) ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑌 ) ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑆 ) ) |
80 |
67 63 72 79
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑆 ) ) |
81 |
80
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑆 ) ) |
82 |
81
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) = ( 𝑠 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
83 |
58 78 82
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( ( 𝐺 ‘ 𝑌 ) ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
84 |
8 54 43
|
ringridm |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑠 ∈ 𝑅 ) → ( 𝑠 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = 𝑠 ) |
85 |
61 52 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = 𝑠 ) |
86 |
83 85 81
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑠 = ( 1r ‘ 𝑆 ) ) |
87 |
|
oveq1 |
⊢ ( 𝑠 = ( 1r ‘ 𝑆 ) → ( 𝑠 · 𝑌 ) = ( ( 1r ‘ 𝑆 ) · 𝑌 ) ) |
88 |
4 7 6 43
|
lmodvs1 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ 𝑆 ) · 𝑌 ) = 𝑌 ) |
89 |
36 25 88
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) · 𝑌 ) = 𝑌 ) |
90 |
89
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 1r ‘ 𝑆 ) · 𝑌 ) = 𝑌 ) |
91 |
87 90
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) ∧ 𝑠 = ( 1r ‘ 𝑆 ) ) → ( 𝑠 · 𝑌 ) = 𝑌 ) |
92 |
86 91
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 · 𝑌 ) = 𝑌 ) |
93 |
40 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑋 = 𝑌 ) |
94 |
93
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑅 𝑋 = ( 𝑠 · 𝑌 ) → 𝑋 = 𝑌 ) ) |
95 |
39 94
|
mpd |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |