Metamath Proof Explorer


Theorem lcfl7lem

Description: Lemma for lcfl7N . If two functionals G and J are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015)

Ref Expression
Hypotheses lcfl7lem.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl7lem.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl7lem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl7lem.v 𝑉 = ( Base ‘ 𝑈 )
lcfl7lem.a + = ( +g𝑈 )
lcfl7lem.t · = ( ·𝑠𝑈 )
lcfl7lem.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfl7lem.r 𝑅 = ( Base ‘ 𝑆 )
lcfl7lem.z 0 = ( 0g𝑈 )
lcfl7lem.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl7lem.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl7lem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl7lem.g 𝐺 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) )
lcfl7lem.j 𝐽 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑌 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑌 ) ) ) )
lcfl7lem.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lcfl7lem.x2 ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lcfl7lem.gj ( 𝜑𝐺 = 𝐽 )
Assertion lcfl7lem ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 lcfl7lem.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl7lem.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl7lem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl7lem.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfl7lem.a + = ( +g𝑈 )
6 lcfl7lem.t · = ( ·𝑠𝑈 )
7 lcfl7lem.s 𝑆 = ( Scalar ‘ 𝑈 )
8 lcfl7lem.r 𝑅 = ( Base ‘ 𝑆 )
9 lcfl7lem.z 0 = ( 0g𝑈 )
10 lcfl7lem.f 𝐹 = ( LFnl ‘ 𝑈 )
11 lcfl7lem.l 𝐿 = ( LKer ‘ 𝑈 )
12 lcfl7lem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 lcfl7lem.g 𝐺 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) )
14 lcfl7lem.j 𝐽 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑌 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑌 ) ) ) )
15 lcfl7lem.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
16 lcfl7lem.x2 ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
17 lcfl7lem.gj ( 𝜑𝐺 = 𝐽 )
18 1 2 3 4 9 5 6 11 7 8 13 12 15 dochsnkr2cl ( 𝜑𝑋 ∈ ( ( ‘ ( 𝐿𝐺 ) ) ∖ { 0 } ) )
19 18 eldifad ( 𝜑𝑋 ∈ ( ‘ ( 𝐿𝐺 ) ) )
20 17 fveq2d ( 𝜑 → ( 𝐿𝐺 ) = ( 𝐿𝐽 ) )
21 1 2 3 4 9 5 6 11 7 8 14 12 16 dochsnkr2 ( 𝜑 → ( 𝐿𝐽 ) = ( ‘ { 𝑌 } ) )
22 20 21 eqtrd ( 𝜑 → ( 𝐿𝐺 ) = ( ‘ { 𝑌 } ) )
23 22 fveq2d ( 𝜑 → ( ‘ ( 𝐿𝐺 ) ) = ( ‘ ( ‘ { 𝑌 } ) ) )
24 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
25 16 eldifad ( 𝜑𝑌𝑉 )
26 25 snssd ( 𝜑 → { 𝑌 } ⊆ 𝑉 )
27 1 3 2 4 24 12 26 dochocsp ( 𝜑 → ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) = ( ‘ { 𝑌 } ) )
28 27 fveq2d ( 𝜑 → ( ‘ ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ) = ( ‘ ( ‘ { 𝑌 } ) ) )
29 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
30 1 3 4 24 29 dihlsprn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝑉 ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
31 12 25 30 syl2anc ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
32 1 29 2 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ‘ ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) )
33 12 31 32 syl2anc ( 𝜑 → ( ‘ ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) )
34 23 28 33 3eqtr2d ( 𝜑 → ( ‘ ( 𝐿𝐺 ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) )
35 19 34 eleqtrd ( 𝜑𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) )
36 1 3 12 dvhlmod ( 𝜑𝑈 ∈ LMod )
37 7 8 4 6 24 lspsnel ( ( 𝑈 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ↔ ∃ 𝑠𝑅 𝑋 = ( 𝑠 · 𝑌 ) ) )
38 36 25 37 syl2anc ( 𝜑 → ( 𝑋 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ↔ ∃ 𝑠𝑅 𝑋 = ( 𝑠 · 𝑌 ) ) )
39 35 38 mpbid ( 𝜑 → ∃ 𝑠𝑅 𝑋 = ( 𝑠 · 𝑌 ) )
40 simp3 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑋 = ( 𝑠 · 𝑌 ) )
41 fveq2 ( 𝑋 = ( 𝑠 · 𝑌 ) → ( 𝐺𝑋 ) = ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) )
42 41 3ad2ant3 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺𝑋 ) = ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) )
43 eqid ( 1r𝑆 ) = ( 1r𝑆 )
44 1 2 3 4 5 6 9 7 8 43 12 16 14 dochfl1 ( 𝜑 → ( 𝐽𝑌 ) = ( 1r𝑆 ) )
45 17 fveq1d ( 𝜑 → ( 𝐺𝑌 ) = ( 𝐽𝑌 ) )
46 1 2 3 4 5 6 9 7 8 43 12 15 13 dochfl1 ( 𝜑 → ( 𝐺𝑋 ) = ( 1r𝑆 ) )
47 44 45 46 3eqtr4rd ( 𝜑 → ( 𝐺𝑋 ) = ( 𝐺𝑌 ) )
48 47 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺𝑋 ) = ( 𝐺𝑌 ) )
49 36 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑈 ∈ LMod )
50 1 2 3 4 9 5 6 10 7 8 13 12 15 dochflcl ( 𝜑𝐺𝐹 )
51 50 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝐺𝐹 )
52 simp2 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑠𝑅 )
53 25 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑌𝑉 )
54 eqid ( .r𝑆 ) = ( .r𝑆 )
55 7 8 54 4 6 10 lflmul ( ( 𝑈 ∈ LMod ∧ 𝐺𝐹 ∧ ( 𝑠𝑅𝑌𝑉 ) ) → ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) = ( 𝑠 ( .r𝑆 ) ( 𝐺𝑌 ) ) )
56 49 51 52 53 55 syl112anc ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺 ‘ ( 𝑠 · 𝑌 ) ) = ( 𝑠 ( .r𝑆 ) ( 𝐺𝑌 ) ) )
57 42 48 56 3eqtr3d ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺𝑌 ) = ( 𝑠 ( .r𝑆 ) ( 𝐺𝑌 ) ) )
58 57 oveq1d ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) = ( ( 𝑠 ( .r𝑆 ) ( 𝐺𝑌 ) ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) )
59 7 lmodring ( 𝑈 ∈ LMod → 𝑆 ∈ Ring )
60 36 59 syl ( 𝜑𝑆 ∈ Ring )
61 60 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑆 ∈ Ring )
62 7 8 4 10 lflcl ( ( 𝑈 ∈ LMod ∧ 𝐺𝐹𝑌𝑉 ) → ( 𝐺𝑌 ) ∈ 𝑅 )
63 36 50 25 62 syl3anc ( 𝜑 → ( 𝐺𝑌 ) ∈ 𝑅 )
64 63 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝐺𝑌 ) ∈ 𝑅 )
65 1 3 12 dvhlvec ( 𝜑𝑈 ∈ LVec )
66 7 lvecdrng ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing )
67 65 66 syl ( 𝜑𝑆 ∈ DivRing )
68 45 44 eqtrd ( 𝜑 → ( 𝐺𝑌 ) = ( 1r𝑆 ) )
69 eqid ( 0g𝑆 ) = ( 0g𝑆 )
70 69 43 drngunz ( 𝑆 ∈ DivRing → ( 1r𝑆 ) ≠ ( 0g𝑆 ) )
71 67 70 syl ( 𝜑 → ( 1r𝑆 ) ≠ ( 0g𝑆 ) )
72 68 71 eqnetrd ( 𝜑 → ( 𝐺𝑌 ) ≠ ( 0g𝑆 ) )
73 eqid ( invr𝑆 ) = ( invr𝑆 )
74 8 69 73 drnginvrcl ( ( 𝑆 ∈ DivRing ∧ ( 𝐺𝑌 ) ∈ 𝑅 ∧ ( 𝐺𝑌 ) ≠ ( 0g𝑆 ) ) → ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ∈ 𝑅 )
75 67 63 72 74 syl3anc ( 𝜑 → ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ∈ 𝑅 )
76 75 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ∈ 𝑅 )
77 8 54 ringass ( ( 𝑆 ∈ Ring ∧ ( 𝑠𝑅 ∧ ( 𝐺𝑌 ) ∈ 𝑅 ∧ ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ∈ 𝑅 ) ) → ( ( 𝑠 ( .r𝑆 ) ( 𝐺𝑌 ) ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) = ( 𝑠 ( .r𝑆 ) ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) ) )
78 61 52 64 76 77 syl13anc ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 𝑠 ( .r𝑆 ) ( 𝐺𝑌 ) ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) = ( 𝑠 ( .r𝑆 ) ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) ) )
79 8 69 54 43 73 drnginvrr ( ( 𝑆 ∈ DivRing ∧ ( 𝐺𝑌 ) ∈ 𝑅 ∧ ( 𝐺𝑌 ) ≠ ( 0g𝑆 ) ) → ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) = ( 1r𝑆 ) )
80 67 63 72 79 syl3anc ( 𝜑 → ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) = ( 1r𝑆 ) )
81 80 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) = ( 1r𝑆 ) )
82 81 oveq2d ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 ( .r𝑆 ) ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) ) = ( 𝑠 ( .r𝑆 ) ( 1r𝑆 ) ) )
83 58 78 82 3eqtrrd ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 ( .r𝑆 ) ( 1r𝑆 ) ) = ( ( 𝐺𝑌 ) ( .r𝑆 ) ( ( invr𝑆 ) ‘ ( 𝐺𝑌 ) ) ) )
84 8 54 43 ringridm ( ( 𝑆 ∈ Ring ∧ 𝑠𝑅 ) → ( 𝑠 ( .r𝑆 ) ( 1r𝑆 ) ) = 𝑠 )
85 61 52 84 syl2anc ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 ( .r𝑆 ) ( 1r𝑆 ) ) = 𝑠 )
86 83 85 81 3eqtr3d ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑠 = ( 1r𝑆 ) )
87 oveq1 ( 𝑠 = ( 1r𝑆 ) → ( 𝑠 · 𝑌 ) = ( ( 1r𝑆 ) · 𝑌 ) )
88 4 7 6 43 lmodvs1 ( ( 𝑈 ∈ LMod ∧ 𝑌𝑉 ) → ( ( 1r𝑆 ) · 𝑌 ) = 𝑌 )
89 36 25 88 syl2anc ( 𝜑 → ( ( 1r𝑆 ) · 𝑌 ) = 𝑌 )
90 89 3ad2ant1 ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( ( 1r𝑆 ) · 𝑌 ) = 𝑌 )
91 87 90 sylan9eqr ( ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) ∧ 𝑠 = ( 1r𝑆 ) ) → ( 𝑠 · 𝑌 ) = 𝑌 )
92 86 91 mpdan ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → ( 𝑠 · 𝑌 ) = 𝑌 )
93 40 92 eqtrd ( ( 𝜑𝑠𝑅𝑋 = ( 𝑠 · 𝑌 ) ) → 𝑋 = 𝑌 )
94 93 rexlimdv3a ( 𝜑 → ( ∃ 𝑠𝑅 𝑋 = ( 𝑠 · 𝑌 ) → 𝑋 = 𝑌 ) )
95 39 94 mpd ( 𝜑𝑋 = 𝑌 )