Metamath Proof Explorer


Theorem lcfl6lem

Description: Lemma for lcfl6 . A functional G (whose kernel is closed by dochsnkr ) is comletely determined by a vector X in the orthocomplement in its kernel at which the functional value is 1. Note that the \ { .0. } in the X hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015)

Ref Expression
Hypotheses lcfl6lem.h H=LHypK
lcfl6lem.o ˙=ocHKW
lcfl6lem.u U=DVecHKW
lcfl6lem.v V=BaseU
lcfl6lem.a +˙=+U
lcfl6lem.t ·˙=U
lcfl6lem.s S=ScalarU
lcfl6lem.i 1˙=1S
lcfl6lem.r R=BaseS
lcfl6lem.z 0˙=0U
lcfl6lem.f F=LFnlU
lcfl6lem.l L=LKerU
lcfl6lem.k φKHLWH
lcfl6lem.g φGF
lcfl6lem.x φX˙LG0˙
lcfl6lem.y φGX=1˙
Assertion lcfl6lem φG=vVιkR|w˙Xv=w+˙k·˙X

Proof

Step Hyp Ref Expression
1 lcfl6lem.h H=LHypK
2 lcfl6lem.o ˙=ocHKW
3 lcfl6lem.u U=DVecHKW
4 lcfl6lem.v V=BaseU
5 lcfl6lem.a +˙=+U
6 lcfl6lem.t ·˙=U
7 lcfl6lem.s S=ScalarU
8 lcfl6lem.i 1˙=1S
9 lcfl6lem.r R=BaseS
10 lcfl6lem.z 0˙=0U
11 lcfl6lem.f F=LFnlU
12 lcfl6lem.l L=LKerU
13 lcfl6lem.k φKHLWH
14 lcfl6lem.g φGF
15 lcfl6lem.x φX˙LG0˙
16 lcfl6lem.y φGX=1˙
17 eqid 0S=0S
18 1 3 13 dvhlvec φULVec
19 1 3 13 dvhlmod φULMod
20 4 11 12 19 14 lkrssv φLGV
21 1 3 4 2 dochssv KHLWHLGV˙LGV
22 13 20 21 syl2anc φ˙LGV
23 15 eldifad φX˙LG
24 22 23 sseldd φXV
25 eqid vVιkR|w˙Xv=w+˙k·˙X=vVιkR|w˙Xv=w+˙k·˙X
26 eldifsni X˙LG0˙X0˙
27 15 26 syl φX0˙
28 eldifsn XV0˙XVX0˙
29 24 27 28 sylanbrc φXV0˙
30 1 2 3 4 10 5 6 11 7 9 25 13 29 dochflcl φvVιkR|w˙Xv=w+˙k·˙XF
31 1 2 3 4 10 11 12 13 14 15 dochsnkr φLG=˙X
32 1 2 3 4 10 5 6 12 7 9 25 13 29 dochsnkr2 φLvVιkR|w˙Xv=w+˙k·˙X=˙X
33 31 32 eqtr4d φLG=LvVιkR|w˙Xv=w+˙k·˙X
34 1 2 3 4 5 6 10 7 9 8 13 29 25 dochfl1 φvVιkR|w˙Xv=w+˙k·˙XX=1˙
35 16 34 eqtr4d φGX=vVιkR|w˙Xv=w+˙k·˙XX
36 1 2 3 4 7 17 10 11 12 13 14 15 dochfln0 φGX0S
37 4 7 9 17 11 12 18 24 14 30 33 35 36 eqlkr3 φG=vVιkR|w˙Xv=w+˙k·˙X