Description: Lemma for lcfl6 . A functional G (whose kernel is closed by dochsnkr ) is comletely determined by a vector X in the orthocomplement in its kernel at which the functional value is 1. Note that the \ { .0. } in the X hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfl6lem.h | |
|
lcfl6lem.o | |
||
lcfl6lem.u | |
||
lcfl6lem.v | |
||
lcfl6lem.a | |
||
lcfl6lem.t | |
||
lcfl6lem.s | |
||
lcfl6lem.i | |
||
lcfl6lem.r | |
||
lcfl6lem.z | |
||
lcfl6lem.f | |
||
lcfl6lem.l | |
||
lcfl6lem.k | |
||
lcfl6lem.g | |
||
lcfl6lem.x | |
||
lcfl6lem.y | |
||
Assertion | lcfl6lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl6lem.h | |
|
2 | lcfl6lem.o | |
|
3 | lcfl6lem.u | |
|
4 | lcfl6lem.v | |
|
5 | lcfl6lem.a | |
|
6 | lcfl6lem.t | |
|
7 | lcfl6lem.s | |
|
8 | lcfl6lem.i | |
|
9 | lcfl6lem.r | |
|
10 | lcfl6lem.z | |
|
11 | lcfl6lem.f | |
|
12 | lcfl6lem.l | |
|
13 | lcfl6lem.k | |
|
14 | lcfl6lem.g | |
|
15 | lcfl6lem.x | |
|
16 | lcfl6lem.y | |
|
17 | eqid | |
|
18 | 1 3 13 | dvhlvec | |
19 | 1 3 13 | dvhlmod | |
20 | 4 11 12 19 14 | lkrssv | |
21 | 1 3 4 2 | dochssv | |
22 | 13 20 21 | syl2anc | |
23 | 15 | eldifad | |
24 | 22 23 | sseldd | |
25 | eqid | |
|
26 | eldifsni | |
|
27 | 15 26 | syl | |
28 | eldifsn | |
|
29 | 24 27 28 | sylanbrc | |
30 | 1 2 3 4 10 5 6 11 7 9 25 13 29 | dochflcl | |
31 | 1 2 3 4 10 11 12 13 14 15 | dochsnkr | |
32 | 1 2 3 4 10 5 6 12 7 9 25 13 29 | dochsnkr2 | |
33 | 31 32 | eqtr4d | |
34 | 1 2 3 4 5 6 10 7 9 8 13 29 25 | dochfl1 | |
35 | 16 34 | eqtr4d | |
36 | 1 2 3 4 7 17 10 11 12 13 14 15 | dochfln0 | |
37 | 4 7 9 17 11 12 18 24 14 30 33 35 36 | eqlkr3 | |