| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfl6.h |
|
| 2 |
|
lcfl6.o |
|
| 3 |
|
lcfl6.u |
|
| 4 |
|
lcfl6.v |
|
| 5 |
|
lcfl6.a |
|
| 6 |
|
lcfl6.t |
|
| 7 |
|
lcfl6.s |
|
| 8 |
|
lcfl6.r |
|
| 9 |
|
lcfl6.z |
|
| 10 |
|
lcfl6.f |
|
| 11 |
|
lcfl6.l |
|
| 12 |
|
lcfl6.c |
|
| 13 |
|
lcfl6.k |
|
| 14 |
|
lcfl6.g |
|
| 15 |
|
df-ne |
|
| 16 |
|
eqid |
|
| 17 |
13
|
ad2antrr |
|
| 18 |
14
|
ad2antrr |
|
| 19 |
1 2 3 4 10 11 12 13 14
|
lcfl2 |
|
| 20 |
19
|
biimpa |
|
| 21 |
20
|
orcomd |
|
| 22 |
21
|
ord |
|
| 23 |
15 22
|
biimtrid |
|
| 24 |
23
|
imp |
|
| 25 |
1 2 3 4 7 9 16 10 11 17 18 24
|
dochkr1 |
|
| 26 |
1 3 13
|
dvhlmod |
|
| 27 |
4 10 11 26 14
|
lkrssv |
|
| 28 |
1 3 4 2
|
dochssv |
|
| 29 |
13 27 28
|
syl2anc |
|
| 30 |
29
|
ssdifd |
|
| 31 |
30
|
ad3antrrr |
|
| 32 |
|
simprl |
|
| 33 |
31 32
|
sseldd |
|
| 34 |
13
|
ad3antrrr |
|
| 35 |
14
|
ad3antrrr |
|
| 36 |
|
simprr |
|
| 37 |
1 2 3 4 5 6 7 16 8 9 10 11 34 35 32 36
|
lcfl6lem |
|
| 38 |
25 33 37
|
reximssdv |
|
| 39 |
38
|
ex |
|
| 40 |
15 39
|
biimtrrid |
|
| 41 |
40
|
orrd |
|
| 42 |
41
|
ex |
|
| 43 |
|
olc |
|
| 44 |
43 19
|
imbitrrid |
|
| 45 |
13
|
adantr |
|
| 46 |
|
eldifi |
|
| 47 |
46
|
adantl |
|
| 48 |
47
|
snssd |
|
| 49 |
|
eqid |
|
| 50 |
1 49 3 4 2
|
dochcl |
|
| 51 |
45 48 50
|
syl2anc |
|
| 52 |
1 49 2
|
dochoc |
|
| 53 |
45 51 52
|
syl2anc |
|
| 54 |
53
|
3adant3 |
|
| 55 |
|
simp3 |
|
| 56 |
55
|
fveq2d |
|
| 57 |
|
eqid |
|
| 58 |
|
simpr |
|
| 59 |
1 2 3 4 9 5 6 11 7 8 57 45 58
|
dochsnkr2 |
|
| 60 |
59
|
3adant3 |
|
| 61 |
56 60
|
eqtrd |
|
| 62 |
61
|
fveq2d |
|
| 63 |
62
|
fveq2d |
|
| 64 |
54 63 61
|
3eqtr4d |
|
| 65 |
14
|
3ad2ant1 |
|
| 66 |
12 65
|
lcfl1 |
|
| 67 |
64 66
|
mpbird |
|
| 68 |
67
|
rexlimdv3a |
|
| 69 |
44 68
|
jaod |
|
| 70 |
42 69
|
impbid |
|