Metamath Proof Explorer


Theorem lcfl6

Description: Property of a functional with a closed kernel. Note that ( LG ) = V means the functional is zero by lkr0f . (Contributed by NM, 3-Jan-2015)

Ref Expression
Hypotheses lcfl6.h H = LHyp K
lcfl6.o ˙ = ocH K W
lcfl6.u U = DVecH K W
lcfl6.v V = Base U
lcfl6.a + ˙ = + U
lcfl6.t · ˙ = U
lcfl6.s S = Scalar U
lcfl6.r R = Base S
lcfl6.z 0 ˙ = 0 U
lcfl6.f F = LFnl U
lcfl6.l L = LKer U
lcfl6.c C = f F | ˙ ˙ L f = L f
lcfl6.k φ K HL W H
lcfl6.g φ G F
Assertion lcfl6 φ G C L G = V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x

Proof

Step Hyp Ref Expression
1 lcfl6.h H = LHyp K
2 lcfl6.o ˙ = ocH K W
3 lcfl6.u U = DVecH K W
4 lcfl6.v V = Base U
5 lcfl6.a + ˙ = + U
6 lcfl6.t · ˙ = U
7 lcfl6.s S = Scalar U
8 lcfl6.r R = Base S
9 lcfl6.z 0 ˙ = 0 U
10 lcfl6.f F = LFnl U
11 lcfl6.l L = LKer U
12 lcfl6.c C = f F | ˙ ˙ L f = L f
13 lcfl6.k φ K HL W H
14 lcfl6.g φ G F
15 df-ne L G V ¬ L G = V
16 eqid 1 S = 1 S
17 13 ad2antrr φ G C L G V K HL W H
18 14 ad2antrr φ G C L G V G F
19 1 2 3 4 10 11 12 13 14 lcfl2 φ G C ˙ ˙ L G V L G = V
20 19 biimpa φ G C ˙ ˙ L G V L G = V
21 20 orcomd φ G C L G = V ˙ ˙ L G V
22 21 ord φ G C ¬ L G = V ˙ ˙ L G V
23 15 22 syl5bi φ G C L G V ˙ ˙ L G V
24 23 imp φ G C L G V ˙ ˙ L G V
25 1 2 3 4 7 9 16 10 11 17 18 24 dochkr1 φ G C L G V x ˙ L G 0 ˙ G x = 1 S
26 1 3 13 dvhlmod φ U LMod
27 4 10 11 26 14 lkrssv φ L G V
28 1 3 4 2 dochssv K HL W H L G V ˙ L G V
29 13 27 28 syl2anc φ ˙ L G V
30 29 ssdifd φ ˙ L G 0 ˙ V 0 ˙
31 30 ad3antrrr φ G C L G V x ˙ L G 0 ˙ G x = 1 S ˙ L G 0 ˙ V 0 ˙
32 simprl φ G C L G V x ˙ L G 0 ˙ G x = 1 S x ˙ L G 0 ˙
33 31 32 sseldd φ G C L G V x ˙ L G 0 ˙ G x = 1 S x V 0 ˙
34 13 ad3antrrr φ G C L G V x ˙ L G 0 ˙ G x = 1 S K HL W H
35 14 ad3antrrr φ G C L G V x ˙ L G 0 ˙ G x = 1 S G F
36 simprr φ G C L G V x ˙ L G 0 ˙ G x = 1 S G x = 1 S
37 1 2 3 4 5 6 7 16 8 9 10 11 34 35 32 36 lcfl6lem φ G C L G V x ˙ L G 0 ˙ G x = 1 S G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
38 25 33 37 reximssdv φ G C L G V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
39 38 ex φ G C L G V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
40 15 39 syl5bir φ G C ¬ L G = V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
41 40 orrd φ G C L G = V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
42 41 ex φ G C L G = V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
43 olc L G = V ˙ ˙ L G V L G = V
44 43 19 syl5ibr φ L G = V G C
45 13 adantr φ x V 0 ˙ K HL W H
46 eldifi x V 0 ˙ x V
47 46 adantl φ x V 0 ˙ x V
48 47 snssd φ x V 0 ˙ x V
49 eqid DIsoH K W = DIsoH K W
50 1 49 3 4 2 dochcl K HL W H x V ˙ x ran DIsoH K W
51 45 48 50 syl2anc φ x V 0 ˙ ˙ x ran DIsoH K W
52 1 49 2 dochoc K HL W H ˙ x ran DIsoH K W ˙ ˙ ˙ x = ˙ x
53 45 51 52 syl2anc φ x V 0 ˙ ˙ ˙ ˙ x = ˙ x
54 53 3adant3 φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x ˙ ˙ ˙ x = ˙ x
55 simp3 φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
56 55 fveq2d φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x L G = L v V ι k R | w ˙ x v = w + ˙ k · ˙ x
57 eqid v V ι k R | w ˙ x v = w + ˙ k · ˙ x = v V ι k R | w ˙ x v = w + ˙ k · ˙ x
58 simpr φ x V 0 ˙ x V 0 ˙
59 1 2 3 4 9 5 6 11 7 8 57 45 58 dochsnkr2 φ x V 0 ˙ L v V ι k R | w ˙ x v = w + ˙ k · ˙ x = ˙ x
60 59 3adant3 φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x L v V ι k R | w ˙ x v = w + ˙ k · ˙ x = ˙ x
61 56 60 eqtrd φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x L G = ˙ x
62 61 fveq2d φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x ˙ L G = ˙ ˙ x
63 62 fveq2d φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x ˙ ˙ L G = ˙ ˙ ˙ x
64 54 63 61 3eqtr4d φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x ˙ ˙ L G = L G
65 14 3ad2ant1 φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x G F
66 12 65 lcfl1 φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x G C ˙ ˙ L G = L G
67 64 66 mpbird φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x G C
68 67 rexlimdv3a φ x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x G C
69 44 68 jaod φ L G = V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x G C
70 42 69 impbid φ G C L G = V x V 0 ˙ G = v V ι k R | w ˙ x v = w + ˙ k · ˙ x