| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfl6.h |
|
| 2 |
|
lcfl6.o |
|
| 3 |
|
lcfl6.u |
|
| 4 |
|
lcfl6.v |
|
| 5 |
|
lcfl6.a |
|
| 6 |
|
lcfl6.t |
|
| 7 |
|
lcfl6.s |
|
| 8 |
|
lcfl6.r |
|
| 9 |
|
lcfl6.z |
|
| 10 |
|
lcfl6.f |
|
| 11 |
|
lcfl6.l |
|
| 12 |
|
lcfl6.c |
|
| 13 |
|
lcfl6.k |
|
| 14 |
|
lcfl6.g |
|
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
lcfl6 |
|
| 16 |
13
|
ad2antrr |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
simplrl |
|
| 20 |
|
simplrr |
|
| 21 |
|
simprl |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
rexbidv |
|
| 24 |
23
|
riotabidv |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
oveq2d |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
27
|
rexbidv |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
eqeq2d |
|
| 31 |
30
|
cbvrexvw |
|
| 32 |
28 31
|
bitrdi |
|
| 33 |
32
|
cbvriotavw |
|
| 34 |
24 33
|
eqtrdi |
|
| 35 |
34
|
cbvmptv |
|
| 36 |
21 35
|
eqtrdi |
|
| 37 |
|
simprr |
|
| 38 |
|
eqeq1 |
|
| 39 |
38
|
rexbidv |
|
| 40 |
39
|
riotabidv |
|
| 41 |
|
oveq1 |
|
| 42 |
41
|
oveq2d |
|
| 43 |
42
|
eqeq2d |
|
| 44 |
43
|
rexbidv |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
46
|
cbvrexvw |
|
| 48 |
44 47
|
bitrdi |
|
| 49 |
48
|
cbvriotavw |
|
| 50 |
40 49
|
eqtrdi |
|
| 51 |
50
|
cbvmptv |
|
| 52 |
37 51
|
eqtrdi |
|
| 53 |
36 52
|
eqtr3d |
|
| 54 |
1 2 3 4 5 6 7 8 9 10 11 16 17 18 19 20 53
|
lcfl7lem |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
ralrimivva |
|
| 57 |
56
|
a1d |
|
| 58 |
57
|
ancld |
|
| 59 |
|
sneq |
|
| 60 |
59
|
fveq2d |
|
| 61 |
|
oveq2 |
|
| 62 |
61
|
oveq2d |
|
| 63 |
62
|
eqeq2d |
|
| 64 |
60 63
|
rexeqbidv |
|
| 65 |
64
|
riotabidv |
|
| 66 |
65
|
mpteq2dv |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
67
|
reu4 |
|
| 69 |
58 68
|
imbitrrdi |
|
| 70 |
|
reurex |
|
| 71 |
69 70
|
impbid1 |
|
| 72 |
71
|
orbi2d |
|
| 73 |
15 72
|
bitrd |
|