Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl8.h |
|
2 |
|
lcfl8.o |
|
3 |
|
lcfl8.u |
|
4 |
|
lcfl8.v |
|
5 |
|
lcfl8.f |
|
6 |
|
lcfl8.l |
|
7 |
|
lcfl8.c |
|
8 |
|
lcfl8.k |
|
9 |
|
lcfl8.g |
|
10 |
1 3 8
|
dvhlmod |
|
11 |
10
|
adantr |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
4 12 13
|
islsati |
|
15 |
11 14
|
sylan |
|
16 |
|
simpr |
|
17 |
16
|
fveq2d |
|
18 |
|
simp-4r |
|
19 |
9
|
ad4antr |
|
20 |
7 19
|
lcfl1 |
|
21 |
18 20
|
mpbid |
|
22 |
8
|
ad4antr |
|
23 |
|
simplr |
|
24 |
23
|
snssd |
|
25 |
1 3 2 4 12 22 24
|
dochocsp |
|
26 |
17 21 25
|
3eqtr3d |
|
27 |
26
|
ex |
|
28 |
27
|
reximdva |
|
29 |
15 28
|
mpd |
|
30 |
11
|
adantr |
|
31 |
|
eqid |
|
32 |
4 31
|
lmod0vcl |
|
33 |
30 32
|
syl |
|
34 |
|
simpr |
|
35 |
8
|
adantr |
|
36 |
35
|
adantr |
|
37 |
1 3 2 4 31
|
doch0 |
|
38 |
36 37
|
syl |
|
39 |
34 38
|
eqtr4d |
|
40 |
|
sneq |
|
41 |
40
|
fveq2d |
|
42 |
41
|
rspceeqv |
|
43 |
33 39 42
|
syl2anc |
|
44 |
1 2 3 4 13 5 6 7 8 9
|
lcfl3 |
|
45 |
44
|
biimpa |
|
46 |
29 43 45
|
mpjaodan |
|
47 |
46
|
ex |
|
48 |
8
|
3ad2ant1 |
|
49 |
|
simp2 |
|
50 |
49
|
snssd |
|
51 |
|
eqid |
|
52 |
1 51 3 4 2
|
dochcl |
|
53 |
48 50 52
|
syl2anc |
|
54 |
1 51 2
|
dochoc |
|
55 |
48 53 54
|
syl2anc |
|
56 |
|
simp3 |
|
57 |
56
|
fveq2d |
|
58 |
57
|
fveq2d |
|
59 |
55 58 56
|
3eqtr4d |
|
60 |
59
|
rexlimdv3a |
|
61 |
7 9
|
lcfl1 |
|
62 |
60 61
|
sylibrd |
|
63 |
47 62
|
impbid |
|