Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lcfl8a
Next ⟩
lcfl8b
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcfl8a
Description:
Property of a functional with a closed kernel.
(Contributed by
NM
, 17-Jan-2015)
Ref
Expression
Hypotheses
lcfl8a.h
⊢
H
=
LHyp
⁡
K
lcfl8a.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
lcfl8a.u
⊢
U
=
DVecH
⁡
K
⁡
W
lcfl8a.v
⊢
V
=
Base
U
lcfl8a.f
⊢
F
=
LFnl
⁡
U
lcfl8a.l
⊢
L
=
LKer
⁡
U
lcfl8a.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
lcfl8a.g
⊢
φ
→
G
∈
F
Assertion
lcfl8a
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
↔
∃
x
∈
V
L
⁡
G
=
⊥
˙
⁡
x
Proof
Step
Hyp
Ref
Expression
1
lcfl8a.h
⊢
H
=
LHyp
⁡
K
2
lcfl8a.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
3
lcfl8a.u
⊢
U
=
DVecH
⁡
K
⁡
W
4
lcfl8a.v
⊢
V
=
Base
U
5
lcfl8a.f
⊢
F
=
LFnl
⁡
U
6
lcfl8a.l
⊢
L
=
LKer
⁡
U
7
lcfl8a.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
8
lcfl8a.g
⊢
φ
→
G
∈
F
9
eqid
⊢
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
10
9
8
lcfl1
⊢
φ
→
G
∈
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
11
1
2
3
4
5
6
9
7
8
lcfl8
⊢
φ
→
G
∈
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
↔
∃
x
∈
V
L
⁡
G
=
⊥
˙
⁡
x
12
10
11
bitr3d
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
↔
∃
x
∈
V
L
⁡
G
=
⊥
˙
⁡
x