Metamath Proof Explorer


Theorem lcfl8a

Description: Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lcfl8a.h H = LHyp K
lcfl8a.o ˙ = ocH K W
lcfl8a.u U = DVecH K W
lcfl8a.v V = Base U
lcfl8a.f F = LFnl U
lcfl8a.l L = LKer U
lcfl8a.k φ K HL W H
lcfl8a.g φ G F
Assertion lcfl8a φ ˙ ˙ L G = L G x V L G = ˙ x

Proof

Step Hyp Ref Expression
1 lcfl8a.h H = LHyp K
2 lcfl8a.o ˙ = ocH K W
3 lcfl8a.u U = DVecH K W
4 lcfl8a.v V = Base U
5 lcfl8a.f F = LFnl U
6 lcfl8a.l L = LKer U
7 lcfl8a.k φ K HL W H
8 lcfl8a.g φ G F
9 eqid f F | ˙ ˙ L f = L f = f F | ˙ ˙ L f = L f
10 9 8 lcfl1 φ G f F | ˙ ˙ L f = L f ˙ ˙ L G = L G
11 1 2 3 4 5 6 9 7 8 lcfl8 φ G f F | ˙ ˙ L f = L f x V L G = ˙ x
12 10 11 bitr3d φ ˙ ˙ L G = L G x V L G = ˙ x