Metamath Proof Explorer


Theorem lcfl8a

Description: Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lcfl8a.h H=LHypK
lcfl8a.o ˙=ocHKW
lcfl8a.u U=DVecHKW
lcfl8a.v V=BaseU
lcfl8a.f F=LFnlU
lcfl8a.l L=LKerU
lcfl8a.k φKHLWH
lcfl8a.g φGF
Assertion lcfl8a φ˙˙LG=LGxVLG=˙x

Proof

Step Hyp Ref Expression
1 lcfl8a.h H=LHypK
2 lcfl8a.o ˙=ocHKW
3 lcfl8a.u U=DVecHKW
4 lcfl8a.v V=BaseU
5 lcfl8a.f F=LFnlU
6 lcfl8a.l L=LKerU
7 lcfl8a.k φKHLWH
8 lcfl8a.g φGF
9 eqid fF|˙˙Lf=Lf=fF|˙˙Lf=Lf
10 9 8 lcfl1 φGfF|˙˙Lf=Lf˙˙LG=LG
11 1 2 3 4 5 6 9 7 8 lcfl8 φGfF|˙˙Lf=LfxVLG=˙x
12 10 11 bitr3d φ˙˙LG=LGxVLG=˙x