Metamath Proof Explorer


Theorem lcfl8a

Description: Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lcfl8a.h
|- H = ( LHyp ` K )
lcfl8a.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfl8a.u
|- U = ( ( DVecH ` K ) ` W )
lcfl8a.v
|- V = ( Base ` U )
lcfl8a.f
|- F = ( LFnl ` U )
lcfl8a.l
|- L = ( LKer ` U )
lcfl8a.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfl8a.g
|- ( ph -> G e. F )
Assertion lcfl8a
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> E. x e. V ( L ` G ) = ( ._|_ ` { x } ) ) )

Proof

Step Hyp Ref Expression
1 lcfl8a.h
 |-  H = ( LHyp ` K )
2 lcfl8a.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfl8a.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfl8a.v
 |-  V = ( Base ` U )
5 lcfl8a.f
 |-  F = ( LFnl ` U )
6 lcfl8a.l
 |-  L = ( LKer ` U )
7 lcfl8a.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 lcfl8a.g
 |-  ( ph -> G e. F )
9 eqid
 |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
10 9 8 lcfl1
 |-  ( ph -> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )
11 1 2 3 4 5 6 9 7 8 lcfl8
 |-  ( ph -> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } <-> E. x e. V ( L ` G ) = ( ._|_ ` { x } ) ) )
12 10 11 bitr3d
 |-  ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> E. x e. V ( L ` G ) = ( ._|_ ` { x } ) ) )