Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl8a.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfl8a.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfl8a.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfl8a.v |
|- V = ( Base ` U ) |
5 |
|
lcfl8a.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfl8a.l |
|- L = ( LKer ` U ) |
7 |
|
lcfl8a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
lcfl8a.g |
|- ( ph -> G e. F ) |
9 |
|
eqid |
|- { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
9 8
|
lcfl1 |
|- ( ph -> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
11 |
1 2 3 4 5 6 9 7 8
|
lcfl8 |
|- ( ph -> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } <-> E. x e. V ( L ` G ) = ( ._|_ ` { x } ) ) ) |
12 |
10 11
|
bitr3d |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> E. x e. V ( L ` G ) = ( ._|_ ` { x } ) ) ) |