Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl8a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl8a.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl8a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl8a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl8a.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfl8a.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfl8a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
lcfl8a.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
eqid |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
10 |
9 8
|
lcfl1 |
⊢ ( 𝜑 → ( 𝐺 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
11 |
1 2 3 4 5 6 9 7 8
|
lcfl8 |
⊢ ( 𝜑 → ( 𝐺 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
12 |
10 11
|
bitr3d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |