Metamath Proof Explorer


Theorem lcfl8a

Description: Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lcfl8a.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl8a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl8a.v 𝑉 = ( Base ‘ 𝑈 )
lcfl8a.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl8a.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl8a.g ( 𝜑𝐺𝐹 )
Assertion lcfl8a ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ∃ 𝑥𝑉 ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) )

Proof

Step Hyp Ref Expression
1 lcfl8a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl8a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl8a.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfl8a.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfl8a.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfl8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 lcfl8a.g ( 𝜑𝐺𝐹 )
9 eqid { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 9 8 lcfl1 ( 𝜑 → ( 𝐺 ∈ { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ↔ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
11 1 2 3 4 5 6 9 7 8 lcfl8 ( 𝜑 → ( 𝐺 ∈ { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ↔ ∃ 𝑥𝑉 ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) )
12 10 11 bitr3d ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ∃ 𝑥𝑉 ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) )