Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl8b.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl8b.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl8b.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl8b.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl8b.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
lcfl8b.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
lcfl8b.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
8 |
|
lcfl8b.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
9 |
|
lcfl8b.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
10 |
|
lcfl8b.y |
⊢ 𝑌 = ( 0g ‘ 𝐷 ) |
11 |
|
lcfl8b.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
12 |
|
lcfl8b.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
lcfl8b.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 ∖ { 𝑌 } ) ) |
14 |
13
|
eldifad |
⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) |
15 |
11
|
lcfl1lem |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
16 |
15
|
simplbi |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐹 ) |
17 |
14 16
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
18 |
1 2 3 4 7 8 11 12 17
|
lcfl8 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) ) |
19 |
14 18
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) |
20 |
|
fveq2 |
⊢ ( ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) ) |
22 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝑉 ) |
24 |
1 3 2 4 5 22 23
|
dochocsn |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑥 } ) ) = ( 𝑁 ‘ { 𝑥 } ) ) |
25 |
21 24
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) |
26 |
14 15
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
27 |
26
|
simprd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
28 |
|
eldifsni |
⊢ ( 𝐺 ∈ ( 𝐶 ∖ { 𝑌 } ) → 𝐺 ≠ 𝑌 ) |
29 |
13 28
|
syl |
⊢ ( 𝜑 → 𝐺 ≠ 𝑌 ) |
30 |
1 3 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
31 |
4 7 8 9 10 30 17
|
lkr0f2 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = 𝑌 ) ) |
32 |
31
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ↔ 𝐺 ≠ 𝑌 ) ) |
33 |
29 32
|
mpbird |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ≠ 𝑉 ) |
34 |
27 33
|
eqnetrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ) |
36 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
37 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → 𝐺 ∈ 𝐹 ) |
38 |
1 2 3 4 36 7 8 22 37
|
dochkrsat2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ↔ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) ) |
39 |
35 38
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
40 |
25 39
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
41 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → 𝑈 ∈ LMod ) |
42 |
4 5 6 36 41 23
|
lsatspn0 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( ( 𝑁 ‘ { 𝑥 } ) ∈ ( LSAtoms ‘ 𝑈 ) ↔ 𝑥 ≠ 0 ) ) |
43 |
40 42
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → 𝑥 ≠ 0 ) |
44 |
43 25
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) ) → ( 𝑥 ≠ 0 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) → ( 𝑥 ≠ 0 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
46 |
45
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑥 } ) → ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
47 |
19 46
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
48 |
|
rexdifsn |
⊢ ( ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
49 |
47 48
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) |