Metamath Proof Explorer


Theorem lcfl8b

Description: Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lcfl8b.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl8b.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl8b.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl8b.v 𝑉 = ( Base ‘ 𝑈 )
lcfl8b.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfl8b.z 0 = ( 0g𝑈 )
lcfl8b.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl8b.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl8b.d 𝐷 = ( LDual ‘ 𝑈 )
lcfl8b.y 𝑌 = ( 0g𝐷 )
lcfl8b.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfl8b.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl8b.g ( 𝜑𝐺 ∈ ( 𝐶 ∖ { 𝑌 } ) )
Assertion lcfl8b ( 𝜑 → ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) )

Proof

Step Hyp Ref Expression
1 lcfl8b.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl8b.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl8b.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl8b.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfl8b.n 𝑁 = ( LSpan ‘ 𝑈 )
6 lcfl8b.z 0 = ( 0g𝑈 )
7 lcfl8b.f 𝐹 = ( LFnl ‘ 𝑈 )
8 lcfl8b.l 𝐿 = ( LKer ‘ 𝑈 )
9 lcfl8b.d 𝐷 = ( LDual ‘ 𝑈 )
10 lcfl8b.y 𝑌 = ( 0g𝐷 )
11 lcfl8b.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
12 lcfl8b.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 lcfl8b.g ( 𝜑𝐺 ∈ ( 𝐶 ∖ { 𝑌 } ) )
14 13 eldifad ( 𝜑𝐺𝐶 )
15 11 lcfl1lem ( 𝐺𝐶 ↔ ( 𝐺𝐹 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
16 15 simplbi ( 𝐺𝐶𝐺𝐹 )
17 14 16 syl ( 𝜑𝐺𝐹 )
18 1 2 3 4 7 8 11 12 17 lcfl8 ( 𝜑 → ( 𝐺𝐶 ↔ ∃ 𝑥𝑉 ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) )
19 14 18 mpbid ( 𝜑 → ∃ 𝑥𝑉 ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) )
20 fveq2 ( ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) → ( ‘ ( 𝐿𝐺 ) ) = ( ‘ ( ‘ { 𝑥 } ) ) )
21 20 adantl ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( ‘ ( 𝐿𝐺 ) ) = ( ‘ ( ‘ { 𝑥 } ) ) )
22 12 ad2antrr ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
23 simplr ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → 𝑥𝑉 )
24 1 3 2 4 5 22 23 dochocsn ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( ‘ ( ‘ { 𝑥 } ) ) = ( 𝑁 ‘ { 𝑥 } ) )
25 21 24 eqtrd ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) )
26 14 15 sylib ( 𝜑 → ( 𝐺𝐹 ∧ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
27 26 simprd ( 𝜑 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) )
28 eldifsni ( 𝐺 ∈ ( 𝐶 ∖ { 𝑌 } ) → 𝐺𝑌 )
29 13 28 syl ( 𝜑𝐺𝑌 )
30 1 3 12 dvhlmod ( 𝜑𝑈 ∈ LMod )
31 4 7 8 9 10 30 17 lkr0f2 ( 𝜑 → ( ( 𝐿𝐺 ) = 𝑉𝐺 = 𝑌 ) )
32 31 necon3bid ( 𝜑 → ( ( 𝐿𝐺 ) ≠ 𝑉𝐺𝑌 ) )
33 29 32 mpbird ( 𝜑 → ( 𝐿𝐺 ) ≠ 𝑉 )
34 27 33 eqnetrd ( 𝜑 → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 )
35 34 ad2antrr ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 )
36 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
37 17 ad2antrr ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → 𝐺𝐹 )
38 1 2 3 4 36 7 8 22 37 dochkrsat2 ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ↔ ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) )
39 35 38 mpbid ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) )
40 25 39 eqeltrrd ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ( LSAtoms ‘ 𝑈 ) )
41 30 ad2antrr ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → 𝑈 ∈ LMod )
42 4 5 6 36 41 23 lsatspn0 ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( ( 𝑁 ‘ { 𝑥 } ) ∈ ( LSAtoms ‘ 𝑈 ) ↔ 𝑥0 ) )
43 40 42 mpbid ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → 𝑥0 )
44 43 25 jca ( ( ( 𝜑𝑥𝑉 ) ∧ ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) ) → ( 𝑥0 ∧ ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) )
45 44 ex ( ( 𝜑𝑥𝑉 ) → ( ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) → ( 𝑥0 ∧ ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) ) )
46 45 reximdva ( 𝜑 → ( ∃ 𝑥𝑉 ( 𝐿𝐺 ) = ( ‘ { 𝑥 } ) → ∃ 𝑥𝑉 ( 𝑥0 ∧ ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) ) )
47 19 46 mpd ( 𝜑 → ∃ 𝑥𝑉 ( 𝑥0 ∧ ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) )
48 rexdifsn ( ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ↔ ∃ 𝑥𝑉 ( 𝑥0 ∧ ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) ) )
49 47 48 sylibr ( 𝜑 → ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( ‘ ( 𝐿𝐺 ) ) = ( 𝑁 ‘ { 𝑥 } ) )