Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl8b.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfl8b.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfl8b.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfl8b.v |
|- V = ( Base ` U ) |
5 |
|
lcfl8b.n |
|- N = ( LSpan ` U ) |
6 |
|
lcfl8b.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfl8b.f |
|- F = ( LFnl ` U ) |
8 |
|
lcfl8b.l |
|- L = ( LKer ` U ) |
9 |
|
lcfl8b.d |
|- D = ( LDual ` U ) |
10 |
|
lcfl8b.y |
|- Y = ( 0g ` D ) |
11 |
|
lcfl8b.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
12 |
|
lcfl8b.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
lcfl8b.g |
|- ( ph -> G e. ( C \ { Y } ) ) |
14 |
13
|
eldifad |
|- ( ph -> G e. C ) |
15 |
11
|
lcfl1lem |
|- ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
16 |
15
|
simplbi |
|- ( G e. C -> G e. F ) |
17 |
14 16
|
syl |
|- ( ph -> G e. F ) |
18 |
1 2 3 4 7 8 11 12 17
|
lcfl8 |
|- ( ph -> ( G e. C <-> E. x e. V ( L ` G ) = ( ._|_ ` { x } ) ) ) |
19 |
14 18
|
mpbid |
|- ( ph -> E. x e. V ( L ` G ) = ( ._|_ ` { x } ) ) |
20 |
|
fveq2 |
|- ( ( L ` G ) = ( ._|_ ` { x } ) -> ( ._|_ ` ( L ` G ) ) = ( ._|_ ` ( ._|_ ` { x } ) ) ) |
21 |
20
|
adantl |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( ._|_ ` ( L ` G ) ) = ( ._|_ ` ( ._|_ ` { x } ) ) ) |
22 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( K e. HL /\ W e. H ) ) |
23 |
|
simplr |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> x e. V ) |
24 |
1 3 2 4 5 22 23
|
dochocsn |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( ._|_ ` ( ._|_ ` { x } ) ) = ( N ` { x } ) ) |
25 |
21 24
|
eqtrd |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) ) |
26 |
14 15
|
sylib |
|- ( ph -> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
27 |
26
|
simprd |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
28 |
|
eldifsni |
|- ( G e. ( C \ { Y } ) -> G =/= Y ) |
29 |
13 28
|
syl |
|- ( ph -> G =/= Y ) |
30 |
1 3 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
31 |
4 7 8 9 10 30 17
|
lkr0f2 |
|- ( ph -> ( ( L ` G ) = V <-> G = Y ) ) |
32 |
31
|
necon3bid |
|- ( ph -> ( ( L ` G ) =/= V <-> G =/= Y ) ) |
33 |
29 32
|
mpbird |
|- ( ph -> ( L ` G ) =/= V ) |
34 |
27 33
|
eqnetrd |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V ) |
35 |
34
|
ad2antrr |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V ) |
36 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
37 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> G e. F ) |
38 |
1 2 3 4 36 7 8 22 37
|
dochkrsat2 |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) ) |
39 |
35 38
|
mpbid |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) |
40 |
25 39
|
eqeltrrd |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( N ` { x } ) e. ( LSAtoms ` U ) ) |
41 |
30
|
ad2antrr |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> U e. LMod ) |
42 |
4 5 6 36 41 23
|
lsatspn0 |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( ( N ` { x } ) e. ( LSAtoms ` U ) <-> x =/= .0. ) ) |
43 |
40 42
|
mpbid |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> x =/= .0. ) |
44 |
43 25
|
jca |
|- ( ( ( ph /\ x e. V ) /\ ( L ` G ) = ( ._|_ ` { x } ) ) -> ( x =/= .0. /\ ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) ) ) |
45 |
44
|
ex |
|- ( ( ph /\ x e. V ) -> ( ( L ` G ) = ( ._|_ ` { x } ) -> ( x =/= .0. /\ ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) ) ) ) |
46 |
45
|
reximdva |
|- ( ph -> ( E. x e. V ( L ` G ) = ( ._|_ ` { x } ) -> E. x e. V ( x =/= .0. /\ ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) ) ) ) |
47 |
19 46
|
mpd |
|- ( ph -> E. x e. V ( x =/= .0. /\ ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) ) ) |
48 |
|
rexdifsn |
|- ( E. x e. ( V \ { .0. } ) ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) <-> E. x e. V ( x =/= .0. /\ ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) ) ) |
49 |
47 48
|
sylibr |
|- ( ph -> E. x e. ( V \ { .0. } ) ( ._|_ ` ( L ` G ) ) = ( N ` { x } ) ) |