| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfl9a.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcfl9a.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcfl9a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcfl9a.v |
|- V = ( Base ` U ) |
| 5 |
|
lcfl9a.f |
|- F = ( LFnl ` U ) |
| 6 |
|
lcfl9a.l |
|- L = ( LKer ` U ) |
| 7 |
|
lcfl9a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
lcfl9a.g |
|- ( ph -> G e. F ) |
| 9 |
|
lcfl9a.x |
|- ( ph -> X e. V ) |
| 10 |
|
lcfl9a.s |
|- ( ph -> ( ._|_ ` { X } ) C_ ( L ` G ) ) |
| 11 |
1 3 2 4 7
|
dochoc1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
| 13 |
1 3 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 14 |
4 5 6 13 8
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( L ` G ) C_ V ) |
| 16 |
|
sneq |
|- ( X = ( 0g ` U ) -> { X } = { ( 0g ` U ) } ) |
| 17 |
16
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( ._|_ ` { X } ) = ( ._|_ ` { ( 0g ` U ) } ) ) |
| 18 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 19 |
1 3 2 4 18
|
doch0 |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { ( 0g ` U ) } ) = V ) |
| 20 |
7 19
|
syl |
|- ( ph -> ( ._|_ ` { ( 0g ` U ) } ) = V ) |
| 21 |
17 20
|
sylan9eqr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( ._|_ ` { X } ) = V ) |
| 22 |
10
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( ._|_ ` { X } ) C_ ( L ` G ) ) |
| 23 |
21 22
|
eqsstrrd |
|- ( ( ph /\ X = ( 0g ` U ) ) -> V C_ ( L ` G ) ) |
| 24 |
15 23
|
eqssd |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( L ` G ) = V ) |
| 25 |
24
|
fveq2d |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( ._|_ ` ( L ` G ) ) = ( ._|_ ` V ) ) |
| 26 |
25
|
fveq2d |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) |
| 27 |
12 26 24
|
3eqtr4d |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
| 28 |
11
|
adantr |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
| 29 |
|
simpr |
|- ( ( ph /\ ( L ` G ) = V ) -> ( L ` G ) = V ) |
| 30 |
29
|
fveq2d |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( L ` G ) ) = ( ._|_ ` V ) ) |
| 31 |
30
|
fveq2d |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) |
| 32 |
28 31 29
|
3eqtr4d |
|- ( ( ph /\ ( L ` G ) = V ) -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
| 33 |
9
|
snssd |
|- ( ph -> { X } C_ V ) |
| 34 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 35 |
1 34 3 4 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 36 |
7 33 35
|
syl2anc |
|- ( ph -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 37 |
1 34 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) |
| 38 |
7 36 37
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) |
| 40 |
10
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ._|_ ` { X } ) C_ ( L ` G ) ) |
| 41 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
| 42 |
1 3 7
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> U e. LVec ) |
| 44 |
7
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( K e. HL /\ W e. H ) ) |
| 45 |
9
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> X e. V ) |
| 46 |
|
simprl |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> X =/= ( 0g ` U ) ) |
| 47 |
|
eldifsn |
|- ( X e. ( V \ { ( 0g ` U ) } ) <-> ( X e. V /\ X =/= ( 0g ` U ) ) ) |
| 48 |
45 46 47
|
sylanbrc |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> X e. ( V \ { ( 0g ` U ) } ) ) |
| 49 |
1 2 3 4 18 41 44 48
|
dochsnshp |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ._|_ ` { X } ) e. ( LSHyp ` U ) ) |
| 50 |
|
simprr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( L ` G ) =/= V ) |
| 51 |
4 41 5 6 42 8
|
lkrshp4 |
|- ( ph -> ( ( L ` G ) =/= V <-> ( L ` G ) e. ( LSHyp ` U ) ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ( L ` G ) =/= V <-> ( L ` G ) e. ( LSHyp ` U ) ) ) |
| 53 |
50 52
|
mpbid |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( L ` G ) e. ( LSHyp ` U ) ) |
| 54 |
41 43 49 53
|
lshpcmp |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ( ._|_ ` { X } ) C_ ( L ` G ) <-> ( ._|_ ` { X } ) = ( L ` G ) ) ) |
| 55 |
40 54
|
mpbid |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ._|_ ` { X } ) = ( L ` G ) ) |
| 56 |
55
|
fveq2d |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ._|_ ` ( ._|_ ` { X } ) ) = ( ._|_ ` ( L ` G ) ) ) |
| 57 |
56
|
fveq2d |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) ) |
| 58 |
39 57 55
|
3eqtr3d |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ ( L ` G ) =/= V ) ) -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |
| 59 |
27 32 58
|
pm2.61da2ne |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) |