Metamath Proof Explorer


Theorem lcfl9a

Description: Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses lcfl9a.h H = LHyp K
lcfl9a.o ˙ = ocH K W
lcfl9a.u U = DVecH K W
lcfl9a.v V = Base U
lcfl9a.f F = LFnl U
lcfl9a.l L = LKer U
lcfl9a.k φ K HL W H
lcfl9a.g φ G F
lcfl9a.x φ X V
lcfl9a.s φ ˙ X L G
Assertion lcfl9a φ ˙ ˙ L G = L G

Proof

Step Hyp Ref Expression
1 lcfl9a.h H = LHyp K
2 lcfl9a.o ˙ = ocH K W
3 lcfl9a.u U = DVecH K W
4 lcfl9a.v V = Base U
5 lcfl9a.f F = LFnl U
6 lcfl9a.l L = LKer U
7 lcfl9a.k φ K HL W H
8 lcfl9a.g φ G F
9 lcfl9a.x φ X V
10 lcfl9a.s φ ˙ X L G
11 1 3 2 4 7 dochoc1 φ ˙ ˙ V = V
12 11 adantr φ X = 0 U ˙ ˙ V = V
13 1 3 7 dvhlmod φ U LMod
14 4 5 6 13 8 lkrssv φ L G V
15 14 adantr φ X = 0 U L G V
16 sneq X = 0 U X = 0 U
17 16 fveq2d X = 0 U ˙ X = ˙ 0 U
18 eqid 0 U = 0 U
19 1 3 2 4 18 doch0 K HL W H ˙ 0 U = V
20 7 19 syl φ ˙ 0 U = V
21 17 20 sylan9eqr φ X = 0 U ˙ X = V
22 10 adantr φ X = 0 U ˙ X L G
23 21 22 eqsstrrd φ X = 0 U V L G
24 15 23 eqssd φ X = 0 U L G = V
25 24 fveq2d φ X = 0 U ˙ L G = ˙ V
26 25 fveq2d φ X = 0 U ˙ ˙ L G = ˙ ˙ V
27 12 26 24 3eqtr4d φ X = 0 U ˙ ˙ L G = L G
28 11 adantr φ L G = V ˙ ˙ V = V
29 simpr φ L G = V L G = V
30 29 fveq2d φ L G = V ˙ L G = ˙ V
31 30 fveq2d φ L G = V ˙ ˙ L G = ˙ ˙ V
32 28 31 29 3eqtr4d φ L G = V ˙ ˙ L G = L G
33 9 snssd φ X V
34 eqid DIsoH K W = DIsoH K W
35 1 34 3 4 2 dochcl K HL W H X V ˙ X ran DIsoH K W
36 7 33 35 syl2anc φ ˙ X ran DIsoH K W
37 1 34 2 dochoc K HL W H ˙ X ran DIsoH K W ˙ ˙ ˙ X = ˙ X
38 7 36 37 syl2anc φ ˙ ˙ ˙ X = ˙ X
39 38 adantr φ X 0 U L G V ˙ ˙ ˙ X = ˙ X
40 10 adantr φ X 0 U L G V ˙ X L G
41 eqid LSHyp U = LSHyp U
42 1 3 7 dvhlvec φ U LVec
43 42 adantr φ X 0 U L G V U LVec
44 7 adantr φ X 0 U L G V K HL W H
45 9 adantr φ X 0 U L G V X V
46 simprl φ X 0 U L G V X 0 U
47 eldifsn X V 0 U X V X 0 U
48 45 46 47 sylanbrc φ X 0 U L G V X V 0 U
49 1 2 3 4 18 41 44 48 dochsnshp φ X 0 U L G V ˙ X LSHyp U
50 simprr φ X 0 U L G V L G V
51 4 41 5 6 42 8 lkrshp4 φ L G V L G LSHyp U
52 51 adantr φ X 0 U L G V L G V L G LSHyp U
53 50 52 mpbid φ X 0 U L G V L G LSHyp U
54 41 43 49 53 lshpcmp φ X 0 U L G V ˙ X L G ˙ X = L G
55 40 54 mpbid φ X 0 U L G V ˙ X = L G
56 55 fveq2d φ X 0 U L G V ˙ ˙ X = ˙ L G
57 56 fveq2d φ X 0 U L G V ˙ ˙ ˙ X = ˙ ˙ L G
58 39 57 55 3eqtr3d φ X 0 U L G V ˙ ˙ L G = L G
59 27 32 58 pm2.61da2ne φ ˙ ˙ L G = L G