Description: The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem1.h | |
|
lclkrlem1.o | |
||
lclkrlem1.u | |
||
lclkrlem1.f | |
||
lclkrlem1.l | |
||
lclkrlem1.d | |
||
lclkrlem1.r | |
||
lclkrlem1.b | |
||
lclkrlem1.t | |
||
lclkrlem1.c | |
||
lclkrlem1.k | |
||
lclkrlem1.x | |
||
lclkrlem1.g | |
||
Assertion | lclkrlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem1.h | |
|
2 | lclkrlem1.o | |
|
3 | lclkrlem1.u | |
|
4 | lclkrlem1.f | |
|
5 | lclkrlem1.l | |
|
6 | lclkrlem1.d | |
|
7 | lclkrlem1.r | |
|
8 | lclkrlem1.b | |
|
9 | lclkrlem1.t | |
|
10 | lclkrlem1.c | |
|
11 | lclkrlem1.k | |
|
12 | lclkrlem1.x | |
|
13 | lclkrlem1.g | |
|
14 | 1 3 11 | dvhlmod | |
15 | 10 | lcfl1lem | |
16 | 13 15 | sylib | |
17 | 16 | simpld | |
18 | 4 7 8 6 9 14 12 17 | ldualvscl | |
19 | eqid | |
|
20 | 1 3 2 19 11 | dochoc1 | |
21 | 20 | adantr | |
22 | fvoveq1 | |
|
23 | 6 14 | lduallmod | |
24 | eqid | |
|
25 | 4 6 24 14 17 | ldualelvbase | |
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 24 26 9 27 28 | lmod0vs | |
30 | 23 25 29 | syl2anc | |
31 | eqid | |
|
32 | 7 31 6 26 27 14 | ldual0 | |
33 | 32 | oveq1d | |
34 | 19 7 31 6 28 14 | ldual0v | |
35 | 30 33 34 | 3eqtr3d | |
36 | 35 | fveq2d | |
37 | eqid | |
|
38 | 7 31 19 4 | lfl0f | |
39 | 7 31 19 4 5 | lkr0f | |
40 | 14 38 39 | syl2anc2 | |
41 | 37 40 | mpbiri | |
42 | 36 41 | eqtrd | |
43 | 22 42 | sylan9eqr | |
44 | 43 | fveq2d | |
45 | 44 | fveq2d | |
46 | 21 45 43 | 3eqtr4d | |
47 | 16 | simprd | |
48 | 47 | adantr | |
49 | 1 3 11 | dvhlvec | |
50 | 49 | adantr | |
51 | 17 | adantr | |
52 | 12 | adantr | |
53 | simpr | |
|
54 | 7 8 31 4 5 6 9 50 51 52 53 | ldualkrsc | |
55 | 54 | fveq2d | |
56 | 55 | fveq2d | |
57 | 48 56 54 | 3eqtr4d | |
58 | 46 57 | pm2.61dane | |
59 | 10 | lcfl1lem | |
60 | 18 58 59 | sylanbrc | |