Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem1.h |
|
2 |
|
lclkrlem1.o |
|
3 |
|
lclkrlem1.u |
|
4 |
|
lclkrlem1.f |
|
5 |
|
lclkrlem1.l |
|
6 |
|
lclkrlem1.d |
|
7 |
|
lclkrlem1.r |
|
8 |
|
lclkrlem1.b |
|
9 |
|
lclkrlem1.t |
|
10 |
|
lclkrlem1.c |
|
11 |
|
lclkrlem1.k |
|
12 |
|
lclkrlem1.x |
|
13 |
|
lclkrlem1.g |
|
14 |
1 3 11
|
dvhlmod |
|
15 |
10
|
lcfl1lem |
|
16 |
13 15
|
sylib |
|
17 |
16
|
simpld |
|
18 |
4 7 8 6 9 14 12 17
|
ldualvscl |
|
19 |
|
eqid |
|
20 |
1 3 2 19 11
|
dochoc1 |
|
21 |
20
|
adantr |
|
22 |
|
fvoveq1 |
|
23 |
6 14
|
lduallmod |
|
24 |
|
eqid |
|
25 |
4 6 24 14 17
|
ldualelvbase |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
24 26 9 27 28
|
lmod0vs |
|
30 |
23 25 29
|
syl2anc |
|
31 |
|
eqid |
|
32 |
7 31 6 26 27 14
|
ldual0 |
|
33 |
32
|
oveq1d |
|
34 |
19 7 31 6 28 14
|
ldual0v |
|
35 |
30 33 34
|
3eqtr3d |
|
36 |
35
|
fveq2d |
|
37 |
|
eqid |
|
38 |
7 31 19 4
|
lfl0f |
|
39 |
7 31 19 4 5
|
lkr0f |
|
40 |
14 38 39
|
syl2anc2 |
|
41 |
37 40
|
mpbiri |
|
42 |
36 41
|
eqtrd |
|
43 |
22 42
|
sylan9eqr |
|
44 |
43
|
fveq2d |
|
45 |
44
|
fveq2d |
|
46 |
21 45 43
|
3eqtr4d |
|
47 |
16
|
simprd |
|
48 |
47
|
adantr |
|
49 |
1 3 11
|
dvhlvec |
|
50 |
49
|
adantr |
|
51 |
17
|
adantr |
|
52 |
12
|
adantr |
|
53 |
|
simpr |
|
54 |
7 8 31 4 5 6 9 50 51 52 53
|
ldualkrsc |
|
55 |
54
|
fveq2d |
|
56 |
55
|
fveq2d |
|
57 |
48 56 54
|
3eqtr4d |
|
58 |
46 57
|
pm2.61dane |
|
59 |
10
|
lcfl1lem |
|
60 |
18 58 59
|
sylanbrc |
|