Metamath Proof Explorer


Theorem lclkrlem1

Description: The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses lclkrlem1.h H=LHypK
lclkrlem1.o ˙=ocHKW
lclkrlem1.u U=DVecHKW
lclkrlem1.f F=LFnlU
lclkrlem1.l L=LKerU
lclkrlem1.d D=LDualU
lclkrlem1.r R=ScalarU
lclkrlem1.b B=BaseR
lclkrlem1.t ·˙=D
lclkrlem1.c C=fF|˙˙Lf=Lf
lclkrlem1.k φKHLWH
lclkrlem1.x φXB
lclkrlem1.g φGC
Assertion lclkrlem1 φX·˙GC

Proof

Step Hyp Ref Expression
1 lclkrlem1.h H=LHypK
2 lclkrlem1.o ˙=ocHKW
3 lclkrlem1.u U=DVecHKW
4 lclkrlem1.f F=LFnlU
5 lclkrlem1.l L=LKerU
6 lclkrlem1.d D=LDualU
7 lclkrlem1.r R=ScalarU
8 lclkrlem1.b B=BaseR
9 lclkrlem1.t ·˙=D
10 lclkrlem1.c C=fF|˙˙Lf=Lf
11 lclkrlem1.k φKHLWH
12 lclkrlem1.x φXB
13 lclkrlem1.g φGC
14 1 3 11 dvhlmod φULMod
15 10 lcfl1lem GCGF˙˙LG=LG
16 13 15 sylib φGF˙˙LG=LG
17 16 simpld φGF
18 4 7 8 6 9 14 12 17 ldualvscl φX·˙GF
19 eqid BaseU=BaseU
20 1 3 2 19 11 dochoc1 φ˙˙BaseU=BaseU
21 20 adantr φX=0R˙˙BaseU=BaseU
22 fvoveq1 X=0RLX·˙G=L0R·˙G
23 6 14 lduallmod φDLMod
24 eqid BaseD=BaseD
25 4 6 24 14 17 ldualelvbase φGBaseD
26 eqid ScalarD=ScalarD
27 eqid 0ScalarD=0ScalarD
28 eqid 0D=0D
29 24 26 9 27 28 lmod0vs DLModGBaseD0ScalarD·˙G=0D
30 23 25 29 syl2anc φ0ScalarD·˙G=0D
31 eqid 0R=0R
32 7 31 6 26 27 14 ldual0 φ0ScalarD=0R
33 32 oveq1d φ0ScalarD·˙G=0R·˙G
34 19 7 31 6 28 14 ldual0v φ0D=BaseU×0R
35 30 33 34 3eqtr3d φ0R·˙G=BaseU×0R
36 35 fveq2d φL0R·˙G=LBaseU×0R
37 eqid BaseU×0R=BaseU×0R
38 7 31 19 4 lfl0f ULModBaseU×0RF
39 7 31 19 4 5 lkr0f ULModBaseU×0RFLBaseU×0R=BaseUBaseU×0R=BaseU×0R
40 14 38 39 syl2anc2 φLBaseU×0R=BaseUBaseU×0R=BaseU×0R
41 37 40 mpbiri φLBaseU×0R=BaseU
42 36 41 eqtrd φL0R·˙G=BaseU
43 22 42 sylan9eqr φX=0RLX·˙G=BaseU
44 43 fveq2d φX=0R˙LX·˙G=˙BaseU
45 44 fveq2d φX=0R˙˙LX·˙G=˙˙BaseU
46 21 45 43 3eqtr4d φX=0R˙˙LX·˙G=LX·˙G
47 16 simprd φ˙˙LG=LG
48 47 adantr φX0R˙˙LG=LG
49 1 3 11 dvhlvec φULVec
50 49 adantr φX0RULVec
51 17 adantr φX0RGF
52 12 adantr φX0RXB
53 simpr φX0RX0R
54 7 8 31 4 5 6 9 50 51 52 53 ldualkrsc φX0RLX·˙G=LG
55 54 fveq2d φX0R˙LX·˙G=˙LG
56 55 fveq2d φX0R˙˙LX·˙G=˙˙LG
57 48 56 54 3eqtr4d φX0R˙˙LX·˙G=LX·˙G
58 46 57 pm2.61dane φ˙˙LX·˙G=LX·˙G
59 10 lcfl1lem X·˙GCX·˙GF˙˙LX·˙G=LX·˙G
60 18 58 59 sylanbrc φX·˙GC