Metamath Proof Explorer


Theorem lclkrlem2a

Description: Lemma for lclkr . Use lshpat to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2a.h H=LHypK
lclkrlem2a.o ˙=ocHKW
lclkrlem2a.u U=DVecHKW
lclkrlem2a.v V=BaseU
lclkrlem2a.z 0˙=0U
lclkrlem2a.p ˙=LSSumU
lclkrlem2a.n N=LSpanU
lclkrlem2a.a A=LSAtomsU
lclkrlem2a.k φKHLWH
lclkrlem2a.b φBV0˙
lclkrlem2a.x φXV0˙
lclkrlem2a.y φYV0˙
lclkrlem2a.e φ˙X˙Y
lclkrlem2a.d φ¬X˙B
Assertion lclkrlem2a φNX˙NY˙BA

Proof

Step Hyp Ref Expression
1 lclkrlem2a.h H=LHypK
2 lclkrlem2a.o ˙=ocHKW
3 lclkrlem2a.u U=DVecHKW
4 lclkrlem2a.v V=BaseU
5 lclkrlem2a.z 0˙=0U
6 lclkrlem2a.p ˙=LSSumU
7 lclkrlem2a.n N=LSpanU
8 lclkrlem2a.a A=LSAtomsU
9 lclkrlem2a.k φKHLWH
10 lclkrlem2a.b φBV0˙
11 lclkrlem2a.x φXV0˙
12 lclkrlem2a.y φYV0˙
13 lclkrlem2a.e φ˙X˙Y
14 lclkrlem2a.d φ¬X˙B
15 eqid LSubSpU=LSubSpU
16 eqid LSHypU=LSHypU
17 1 3 9 dvhlvec φULVec
18 1 2 3 4 5 16 9 10 dochsnshp φ˙BLSHypU
19 1 3 9 dvhlmod φULMod
20 4 7 5 8 19 11 lsatlspsn φNXA
21 4 7 5 8 19 12 lsatlspsn φNYA
22 11 eldifad φXV
23 22 snssd φXV
24 1 3 2 4 7 9 23 dochocsp φ˙NX=˙X
25 12 eldifad φYV
26 25 snssd φYV
27 1 3 2 4 7 9 26 dochocsp φ˙NY=˙Y
28 24 27 eqeq12d φ˙NX=˙NY˙X=˙Y
29 eqid DIsoHKW=DIsoHKW
30 1 3 4 7 29 dihlsprn KHLWHXVNXranDIsoHKW
31 9 22 30 syl2anc φNXranDIsoHKW
32 1 3 4 7 29 dihlsprn KHLWHYVNYranDIsoHKW
33 9 25 32 syl2anc φNYranDIsoHKW
34 1 29 2 9 31 33 doch11 φ˙NX=˙NYNX=NY
35 28 34 bitr3d φ˙X=˙YNX=NY
36 35 necon3bid φ˙X˙YNXNY
37 13 36 mpbid φNXNY
38 10 eldifad φBV
39 38 snssd φBV
40 1 3 4 15 2 dochlss KHLWHBV˙BLSubSpU
41 9 39 40 syl2anc φ˙BLSubSpU
42 4 15 7 19 41 22 lspsnel5 φX˙BNX˙B
43 14 42 mtbid φ¬NX˙B
44 15 6 16 8 17 18 20 21 37 43 lshpat φNX˙NY˙BA