Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2a.h |
|
2 |
|
lclkrlem2a.o |
|
3 |
|
lclkrlem2a.u |
|
4 |
|
lclkrlem2a.v |
|
5 |
|
lclkrlem2a.z |
|
6 |
|
lclkrlem2a.p |
|
7 |
|
lclkrlem2a.n |
|
8 |
|
lclkrlem2a.a |
|
9 |
|
lclkrlem2a.k |
|
10 |
|
lclkrlem2a.b |
|
11 |
|
lclkrlem2a.x |
|
12 |
|
lclkrlem2a.y |
|
13 |
|
lclkrlem2a.e |
|
14 |
|
lclkrlem2a.d |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
1 3 9
|
dvhlvec |
|
18 |
1 2 3 4 5 16 9 10
|
dochsnshp |
|
19 |
1 3 9
|
dvhlmod |
|
20 |
4 7 5 8 19 11
|
lsatlspsn |
|
21 |
4 7 5 8 19 12
|
lsatlspsn |
|
22 |
11
|
eldifad |
|
23 |
22
|
snssd |
|
24 |
1 3 2 4 7 9 23
|
dochocsp |
|
25 |
12
|
eldifad |
|
26 |
25
|
snssd |
|
27 |
1 3 2 4 7 9 26
|
dochocsp |
|
28 |
24 27
|
eqeq12d |
|
29 |
|
eqid |
|
30 |
1 3 4 7 29
|
dihlsprn |
|
31 |
9 22 30
|
syl2anc |
|
32 |
1 3 4 7 29
|
dihlsprn |
|
33 |
9 25 32
|
syl2anc |
|
34 |
1 29 2 9 31 33
|
doch11 |
|
35 |
28 34
|
bitr3d |
|
36 |
35
|
necon3bid |
|
37 |
13 36
|
mpbid |
|
38 |
10
|
eldifad |
|
39 |
38
|
snssd |
|
40 |
1 3 4 15 2
|
dochlss |
|
41 |
9 39 40
|
syl2anc |
|
42 |
4 15 7 19 41 22
|
lspsnel5 |
|
43 |
14 42
|
mtbid |
|
44 |
15 6 16 8 17 18 20 21 37 43
|
lshpat |
|