Description: Lemma for lclkr . Use lshpat to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2a.h | |
|
lclkrlem2a.o | |
||
lclkrlem2a.u | |
||
lclkrlem2a.v | |
||
lclkrlem2a.z | |
||
lclkrlem2a.p | |
||
lclkrlem2a.n | |
||
lclkrlem2a.a | |
||
lclkrlem2a.k | |
||
lclkrlem2a.b | |
||
lclkrlem2a.x | |
||
lclkrlem2a.y | |
||
lclkrlem2a.e | |
||
lclkrlem2a.d | |
||
Assertion | lclkrlem2a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2a.h | |
|
2 | lclkrlem2a.o | |
|
3 | lclkrlem2a.u | |
|
4 | lclkrlem2a.v | |
|
5 | lclkrlem2a.z | |
|
6 | lclkrlem2a.p | |
|
7 | lclkrlem2a.n | |
|
8 | lclkrlem2a.a | |
|
9 | lclkrlem2a.k | |
|
10 | lclkrlem2a.b | |
|
11 | lclkrlem2a.x | |
|
12 | lclkrlem2a.y | |
|
13 | lclkrlem2a.e | |
|
14 | lclkrlem2a.d | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 1 3 9 | dvhlvec | |
18 | 1 2 3 4 5 16 9 10 | dochsnshp | |
19 | 1 3 9 | dvhlmod | |
20 | 4 7 5 8 19 11 | lsatlspsn | |
21 | 4 7 5 8 19 12 | lsatlspsn | |
22 | 11 | eldifad | |
23 | 22 | snssd | |
24 | 1 3 2 4 7 9 23 | dochocsp | |
25 | 12 | eldifad | |
26 | 25 | snssd | |
27 | 1 3 2 4 7 9 26 | dochocsp | |
28 | 24 27 | eqeq12d | |
29 | eqid | |
|
30 | 1 3 4 7 29 | dihlsprn | |
31 | 9 22 30 | syl2anc | |
32 | 1 3 4 7 29 | dihlsprn | |
33 | 9 25 32 | syl2anc | |
34 | 1 29 2 9 31 33 | doch11 | |
35 | 28 34 | bitr3d | |
36 | 35 | necon3bid | |
37 | 13 36 | mpbid | |
38 | 10 | eldifad | |
39 | 38 | snssd | |
40 | 1 3 4 15 2 | dochlss | |
41 | 9 39 40 | syl2anc | |
42 | 4 15 7 19 41 22 | lspsnel5 | |
43 | 14 42 | mtbid | |
44 | 15 6 16 8 17 18 20 21 37 43 | lshpat | |