Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2a.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2a.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2a.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2a.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2a.z |
|- .0. = ( 0g ` U ) |
6 |
|
lclkrlem2a.p |
|- .(+) = ( LSSum ` U ) |
7 |
|
lclkrlem2a.n |
|- N = ( LSpan ` U ) |
8 |
|
lclkrlem2a.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lclkrlem2a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lclkrlem2a.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
11 |
|
lclkrlem2a.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
12 |
|
lclkrlem2a.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
13 |
|
lclkrlem2a.e |
|- ( ph -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) |
14 |
|
lclkrlem2a.d |
|- ( ph -> -. X e. ( ._|_ ` { B } ) ) |
15 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
16 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
17 |
1 3 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
18 |
1 2 3 4 5 16 9 10
|
dochsnshp |
|- ( ph -> ( ._|_ ` { B } ) e. ( LSHyp ` U ) ) |
19 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
20 |
4 7 5 8 19 11
|
lsatlspsn |
|- ( ph -> ( N ` { X } ) e. A ) |
21 |
4 7 5 8 19 12
|
lsatlspsn |
|- ( ph -> ( N ` { Y } ) e. A ) |
22 |
11
|
eldifad |
|- ( ph -> X e. V ) |
23 |
22
|
snssd |
|- ( ph -> { X } C_ V ) |
24 |
1 3 2 4 7 9 23
|
dochocsp |
|- ( ph -> ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` { X } ) ) |
25 |
12
|
eldifad |
|- ( ph -> Y e. V ) |
26 |
25
|
snssd |
|- ( ph -> { Y } C_ V ) |
27 |
1 3 2 4 7 9 26
|
dochocsp |
|- ( ph -> ( ._|_ ` ( N ` { Y } ) ) = ( ._|_ ` { Y } ) ) |
28 |
24 27
|
eqeq12d |
|- ( ph -> ( ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` ( N ` { Y } ) ) <-> ( ._|_ ` { X } ) = ( ._|_ ` { Y } ) ) ) |
29 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
30 |
1 3 4 7 29
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
31 |
9 22 30
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
32 |
1 3 4 7 29
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. V ) -> ( N ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
33 |
9 25 32
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
34 |
1 29 2 9 31 33
|
doch11 |
|- ( ph -> ( ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |
35 |
28 34
|
bitr3d |
|- ( ph -> ( ( ._|_ ` { X } ) = ( ._|_ ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |
36 |
35
|
necon3bid |
|- ( ph -> ( ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
37 |
13 36
|
mpbid |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
38 |
10
|
eldifad |
|- ( ph -> B e. V ) |
39 |
38
|
snssd |
|- ( ph -> { B } C_ V ) |
40 |
1 3 4 15 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ { B } C_ V ) -> ( ._|_ ` { B } ) e. ( LSubSp ` U ) ) |
41 |
9 39 40
|
syl2anc |
|- ( ph -> ( ._|_ ` { B } ) e. ( LSubSp ` U ) ) |
42 |
4 15 7 19 41 22
|
lspsnel5 |
|- ( ph -> ( X e. ( ._|_ ` { B } ) <-> ( N ` { X } ) C_ ( ._|_ ` { B } ) ) ) |
43 |
14 42
|
mtbid |
|- ( ph -> -. ( N ` { X } ) C_ ( ._|_ ` { B } ) ) |
44 |
15 6 16 8 17 18 20 21 37 43
|
lshpat |
|- ( ph -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) i^i ( ._|_ ` { B } ) ) e. A ) |