| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2a.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2a.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2a.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2a.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2a.z |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | lclkrlem2a.p |  |-  .(+) = ( LSSum ` U ) | 
						
							| 7 |  | lclkrlem2a.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | lclkrlem2a.a |  |-  A = ( LSAtoms ` U ) | 
						
							| 9 |  | lclkrlem2a.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | lclkrlem2a.b |  |-  ( ph -> B e. ( V \ { .0. } ) ) | 
						
							| 11 |  | lclkrlem2a.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 12 |  | lclkrlem2a.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 13 |  | lclkrlem2a.e |  |-  ( ph -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) | 
						
							| 14 |  | lclkrlem2a.d |  |-  ( ph -> -. X e. ( ._|_ ` { B } ) ) | 
						
							| 15 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 16 |  | eqid |  |-  ( LSHyp ` U ) = ( LSHyp ` U ) | 
						
							| 17 | 1 3 9 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 18 | 1 2 3 4 5 16 9 10 | dochsnshp |  |-  ( ph -> ( ._|_ ` { B } ) e. ( LSHyp ` U ) ) | 
						
							| 19 | 1 3 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 20 | 4 7 5 8 19 11 | lsatlspsn |  |-  ( ph -> ( N ` { X } ) e. A ) | 
						
							| 21 | 4 7 5 8 19 12 | lsatlspsn |  |-  ( ph -> ( N ` { Y } ) e. A ) | 
						
							| 22 | 11 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 23 | 22 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 24 | 1 3 2 4 7 9 23 | dochocsp |  |-  ( ph -> ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` { X } ) ) | 
						
							| 25 | 12 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 26 | 25 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 27 | 1 3 2 4 7 9 26 | dochocsp |  |-  ( ph -> ( ._|_ ` ( N ` { Y } ) ) = ( ._|_ ` { Y } ) ) | 
						
							| 28 | 24 27 | eqeq12d |  |-  ( ph -> ( ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` ( N ` { Y } ) ) <-> ( ._|_ ` { X } ) = ( ._|_ ` { Y } ) ) ) | 
						
							| 29 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 30 | 1 3 4 7 29 | dihlsprn |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 31 | 9 22 30 | syl2anc |  |-  ( ph -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 32 | 1 3 4 7 29 | dihlsprn |  |-  ( ( ( K e. HL /\ W e. H ) /\ Y e. V ) -> ( N ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 33 | 9 25 32 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 34 | 1 29 2 9 31 33 | doch11 |  |-  ( ph -> ( ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) | 
						
							| 35 | 28 34 | bitr3d |  |-  ( ph -> ( ( ._|_ ` { X } ) = ( ._|_ ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) | 
						
							| 36 | 35 | necon3bid |  |-  ( ph -> ( ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) | 
						
							| 37 | 13 36 | mpbid |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 38 | 10 | eldifad |  |-  ( ph -> B e. V ) | 
						
							| 39 | 38 | snssd |  |-  ( ph -> { B } C_ V ) | 
						
							| 40 | 1 3 4 15 2 | dochlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ { B } C_ V ) -> ( ._|_ ` { B } ) e. ( LSubSp ` U ) ) | 
						
							| 41 | 9 39 40 | syl2anc |  |-  ( ph -> ( ._|_ ` { B } ) e. ( LSubSp ` U ) ) | 
						
							| 42 | 4 15 7 19 41 22 | ellspsn5b |  |-  ( ph -> ( X e. ( ._|_ ` { B } ) <-> ( N ` { X } ) C_ ( ._|_ ` { B } ) ) ) | 
						
							| 43 | 14 42 | mtbid |  |-  ( ph -> -. ( N ` { X } ) C_ ( ._|_ ` { B } ) ) | 
						
							| 44 | 15 6 16 8 17 18 20 21 37 43 | lshpat |  |-  ( ph -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) i^i ( ._|_ ` { B } ) ) e. A ) |