| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2a.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2a.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2a.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2a.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2a.z |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | lclkrlem2a.p |  |-  .(+) = ( LSSum ` U ) | 
						
							| 7 |  | lclkrlem2a.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | lclkrlem2a.a |  |-  A = ( LSAtoms ` U ) | 
						
							| 9 |  | lclkrlem2a.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | lclkrlem2a.b |  |-  ( ph -> B e. ( V \ { .0. } ) ) | 
						
							| 11 |  | lclkrlem2a.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 12 |  | lclkrlem2a.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 13 |  | lclkrlem2a.e |  |-  ( ph -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) | 
						
							| 14 |  | lclkrlem2b.da |  |-  ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) | 
						
							| 15 | 9 | adantr |  |-  ( ( ph /\ -. X e. ( ._|_ ` { B } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 | 10 | adantr |  |-  ( ( ph /\ -. X e. ( ._|_ ` { B } ) ) -> B e. ( V \ { .0. } ) ) | 
						
							| 17 | 11 | adantr |  |-  ( ( ph /\ -. X e. ( ._|_ ` { B } ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 18 | 12 | adantr |  |-  ( ( ph /\ -. X e. ( ._|_ ` { B } ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 19 | 13 | adantr |  |-  ( ( ph /\ -. X e. ( ._|_ ` { B } ) ) -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ -. X e. ( ._|_ ` { B } ) ) -> -. X e. ( ._|_ ` { B } ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 15 16 17 18 19 20 | lclkrlem2a |  |-  ( ( ph /\ -. X e. ( ._|_ ` { B } ) ) -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) i^i ( ._|_ ` { B } ) ) e. A ) | 
						
							| 22 | 1 3 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 23 |  | lmodabl |  |-  ( U e. LMod -> U e. Abel ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> U e. Abel ) | 
						
							| 25 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 26 | 25 | lsssssubg |  |-  ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 27 | 22 26 | syl |  |-  ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 28 | 11 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 29 | 4 25 7 | lspsncl |  |-  ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) | 
						
							| 30 | 22 28 29 | syl2anc |  |-  ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) | 
						
							| 31 | 27 30 | sseldd |  |-  ( ph -> ( N ` { X } ) e. ( SubGrp ` U ) ) | 
						
							| 32 | 12 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 33 | 4 25 7 | lspsncl |  |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 34 | 22 32 33 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 35 | 27 34 | sseldd |  |-  ( ph -> ( N ` { Y } ) e. ( SubGrp ` U ) ) | 
						
							| 36 | 6 | lsmcom |  |-  ( ( U e. Abel /\ ( N ` { X } ) e. ( SubGrp ` U ) /\ ( N ` { Y } ) e. ( SubGrp ` U ) ) -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( ( N ` { Y } ) .(+) ( N ` { X } ) ) ) | 
						
							| 37 | 24 31 35 36 | syl3anc |  |-  ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( ( N ` { Y } ) .(+) ( N ` { X } ) ) ) | 
						
							| 38 | 37 | ineq1d |  |-  ( ph -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) i^i ( ._|_ ` { B } ) ) = ( ( ( N ` { Y } ) .(+) ( N ` { X } ) ) i^i ( ._|_ ` { B } ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) i^i ( ._|_ ` { B } ) ) = ( ( ( N ` { Y } ) .(+) ( N ` { X } ) ) i^i ( ._|_ ` { B } ) ) ) | 
						
							| 40 | 9 | adantr |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 41 | 10 | adantr |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> B e. ( V \ { .0. } ) ) | 
						
							| 42 | 12 | adantr |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 43 | 11 | adantr |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 44 | 13 | necomd |  |-  ( ph -> ( ._|_ ` { Y } ) =/= ( ._|_ ` { X } ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> ( ._|_ ` { Y } ) =/= ( ._|_ ` { X } ) ) | 
						
							| 46 |  | simpr |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> -. Y e. ( ._|_ ` { B } ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 40 41 42 43 45 46 | lclkrlem2a |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> ( ( ( N ` { Y } ) .(+) ( N ` { X } ) ) i^i ( ._|_ ` { B } ) ) e. A ) | 
						
							| 48 | 39 47 | eqeltrd |  |-  ( ( ph /\ -. Y e. ( ._|_ ` { B } ) ) -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) i^i ( ._|_ ` { B } ) ) e. A ) | 
						
							| 49 | 21 48 14 | mpjaodan |  |-  ( ph -> ( ( ( N ` { X } ) .(+) ( N ` { Y } ) ) i^i ( ._|_ ` { B } ) ) e. A ) |