Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2a.h |
|
2 |
|
lclkrlem2a.o |
|
3 |
|
lclkrlem2a.u |
|
4 |
|
lclkrlem2a.v |
|
5 |
|
lclkrlem2a.z |
|
6 |
|
lclkrlem2a.p |
|
7 |
|
lclkrlem2a.n |
|
8 |
|
lclkrlem2a.a |
|
9 |
|
lclkrlem2a.k |
|
10 |
|
lclkrlem2a.b |
|
11 |
|
lclkrlem2a.x |
|
12 |
|
lclkrlem2a.y |
|
13 |
|
lclkrlem2a.e |
|
14 |
|
lclkrlem2b.da |
|
15 |
9
|
adantr |
|
16 |
10
|
adantr |
|
17 |
11
|
adantr |
|
18 |
12
|
adantr |
|
19 |
13
|
adantr |
|
20 |
|
simpr |
|
21 |
1 2 3 4 5 6 7 8 15 16 17 18 19 20
|
lclkrlem2a |
|
22 |
1 3 9
|
dvhlmod |
|
23 |
|
lmodabl |
|
24 |
22 23
|
syl |
|
25 |
|
eqid |
|
26 |
25
|
lsssssubg |
|
27 |
22 26
|
syl |
|
28 |
11
|
eldifad |
|
29 |
4 25 7
|
lspsncl |
|
30 |
22 28 29
|
syl2anc |
|
31 |
27 30
|
sseldd |
|
32 |
12
|
eldifad |
|
33 |
4 25 7
|
lspsncl |
|
34 |
22 32 33
|
syl2anc |
|
35 |
27 34
|
sseldd |
|
36 |
6
|
lsmcom |
|
37 |
24 31 35 36
|
syl3anc |
|
38 |
37
|
ineq1d |
|
39 |
38
|
adantr |
|
40 |
9
|
adantr |
|
41 |
10
|
adantr |
|
42 |
12
|
adantr |
|
43 |
11
|
adantr |
|
44 |
13
|
necomd |
|
45 |
44
|
adantr |
|
46 |
|
simpr |
|
47 |
1 2 3 4 5 6 7 8 40 41 42 43 45 46
|
lclkrlem2a |
|
48 |
39 47
|
eqeltrd |
|
49 |
21 48 14
|
mpjaodan |
|