Metamath Proof Explorer


Theorem lclkrlem2c

Description: Lemma for lclkr . (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2a.h H=LHypK
lclkrlem2a.o ˙=ocHKW
lclkrlem2a.u U=DVecHKW
lclkrlem2a.v V=BaseU
lclkrlem2a.z 0˙=0U
lclkrlem2a.p ˙=LSSumU
lclkrlem2a.n N=LSpanU
lclkrlem2a.a A=LSAtomsU
lclkrlem2a.k φKHLWH
lclkrlem2a.b φBV0˙
lclkrlem2a.x φXV0˙
lclkrlem2a.y φYV0˙
lclkrlem2a.e φ˙X˙Y
lclkrlem2b.da φ¬X˙B¬Y˙B
lclkrlem2c.j J=LSHypU
Assertion lclkrlem2c φ˙X˙Y˙NBJ

Proof

Step Hyp Ref Expression
1 lclkrlem2a.h H=LHypK
2 lclkrlem2a.o ˙=ocHKW
3 lclkrlem2a.u U=DVecHKW
4 lclkrlem2a.v V=BaseU
5 lclkrlem2a.z 0˙=0U
6 lclkrlem2a.p ˙=LSSumU
7 lclkrlem2a.n N=LSpanU
8 lclkrlem2a.a A=LSAtomsU
9 lclkrlem2a.k φKHLWH
10 lclkrlem2a.b φBV0˙
11 lclkrlem2a.x φXV0˙
12 lclkrlem2a.y φYV0˙
13 lclkrlem2a.e φ˙X˙Y
14 lclkrlem2b.da φ¬X˙B¬Y˙B
15 lclkrlem2c.j J=LSHypU
16 eqid DIsoHKW=DIsoHKW
17 eqid joinHKW=joinHKW
18 11 eldifad φXV
19 1 3 4 7 16 dihlsprn KHLWHXVNXranDIsoHKW
20 9 18 19 syl2anc φNXranDIsoHKW
21 1 3 9 dvhlmod φULMod
22 4 7 5 8 21 12 lsatlspsn φNYA
23 1 16 3 6 8 9 20 22 dihsmatrn φNX˙NYranDIsoHKW
24 10 eldifad φBV
25 24 snssd φBV
26 1 16 3 4 2 dochcl KHLWHBV˙BranDIsoHKW
27 9 25 26 syl2anc φ˙BranDIsoHKW
28 1 16 3 4 2 17 9 23 27 dochdmm1 φ˙NX˙NY˙B=˙NX˙NYjoinHKW˙˙B
29 12 eldifad φYV
30 4 7 6 21 18 29 lsmpr φNXY=NX˙NY
31 df-pr XY=XY
32 31 fveq2i NXY=NXY
33 30 32 eqtr3di φNX˙NY=NXY
34 33 fveq2d φ˙NX˙NY=˙NXY
35 18 snssd φXV
36 29 snssd φYV
37 35 36 unssd φXYV
38 1 3 2 4 7 9 37 dochocsp φ˙NXY=˙XY
39 1 3 4 2 dochdmj1 KHLWHXVYV˙XY=˙X˙Y
40 9 35 36 39 syl3anc φ˙XY=˙X˙Y
41 34 38 40 3eqtrd φ˙NX˙NY=˙X˙Y
42 1 3 2 4 7 9 24 dochocsn φ˙˙B=NB
43 41 42 oveq12d φ˙NX˙NYjoinHKW˙˙B=˙X˙YjoinHKWNB
44 1 16 3 4 2 dochcl KHLWHXV˙XranDIsoHKW
45 9 35 44 syl2anc φ˙XranDIsoHKW
46 1 16 3 4 2 dochcl KHLWHYV˙YranDIsoHKW
47 9 36 46 syl2anc φ˙YranDIsoHKW
48 1 16 dihmeetcl KHLWH˙XranDIsoHKW˙YranDIsoHKW˙X˙YranDIsoHKW
49 9 45 47 48 syl12anc φ˙X˙YranDIsoHKW
50 1 3 4 6 7 16 17 9 49 24 dihjat1 φ˙X˙YjoinHKWNB=˙X˙Y˙NB
51 28 43 50 3eqtrrd φ˙X˙Y˙NB=˙NX˙NY˙B
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 lclkrlem2b φNX˙NY˙BA
53 1 3 2 8 15 9 52 dochsatshp φ˙NX˙NY˙BJ
54 51 53 eqeltrd φ˙X˙Y˙NBJ