Description: Lemma for lclkr . (Contributed by NM, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2a.h | |
|
lclkrlem2a.o | |
||
lclkrlem2a.u | |
||
lclkrlem2a.v | |
||
lclkrlem2a.z | |
||
lclkrlem2a.p | |
||
lclkrlem2a.n | |
||
lclkrlem2a.a | |
||
lclkrlem2a.k | |
||
lclkrlem2a.b | |
||
lclkrlem2a.x | |
||
lclkrlem2a.y | |
||
lclkrlem2a.e | |
||
lclkrlem2b.da | |
||
lclkrlem2c.j | |
||
Assertion | lclkrlem2c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2a.h | |
|
2 | lclkrlem2a.o | |
|
3 | lclkrlem2a.u | |
|
4 | lclkrlem2a.v | |
|
5 | lclkrlem2a.z | |
|
6 | lclkrlem2a.p | |
|
7 | lclkrlem2a.n | |
|
8 | lclkrlem2a.a | |
|
9 | lclkrlem2a.k | |
|
10 | lclkrlem2a.b | |
|
11 | lclkrlem2a.x | |
|
12 | lclkrlem2a.y | |
|
13 | lclkrlem2a.e | |
|
14 | lclkrlem2b.da | |
|
15 | lclkrlem2c.j | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 11 | eldifad | |
19 | 1 3 4 7 16 | dihlsprn | |
20 | 9 18 19 | syl2anc | |
21 | 1 3 9 | dvhlmod | |
22 | 4 7 5 8 21 12 | lsatlspsn | |
23 | 1 16 3 6 8 9 20 22 | dihsmatrn | |
24 | 10 | eldifad | |
25 | 24 | snssd | |
26 | 1 16 3 4 2 | dochcl | |
27 | 9 25 26 | syl2anc | |
28 | 1 16 3 4 2 17 9 23 27 | dochdmm1 | |
29 | 12 | eldifad | |
30 | 4 7 6 21 18 29 | lsmpr | |
31 | df-pr | |
|
32 | 31 | fveq2i | |
33 | 30 32 | eqtr3di | |
34 | 33 | fveq2d | |
35 | 18 | snssd | |
36 | 29 | snssd | |
37 | 35 36 | unssd | |
38 | 1 3 2 4 7 9 37 | dochocsp | |
39 | 1 3 4 2 | dochdmj1 | |
40 | 9 35 36 39 | syl3anc | |
41 | 34 38 40 | 3eqtrd | |
42 | 1 3 2 4 7 9 24 | dochocsn | |
43 | 41 42 | oveq12d | |
44 | 1 16 3 4 2 | dochcl | |
45 | 9 35 44 | syl2anc | |
46 | 1 16 3 4 2 | dochcl | |
47 | 9 36 46 | syl2anc | |
48 | 1 16 | dihmeetcl | |
49 | 9 45 47 48 | syl12anc | |
50 | 1 3 4 6 7 16 17 9 49 24 | dihjat1 | |
51 | 28 43 50 | 3eqtrrd | |
52 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | lclkrlem2b | |
53 | 1 3 2 8 15 9 52 | dochsatshp | |
54 | 51 53 | eqeltrd | |