Metamath Proof Explorer


Theorem lclkrlem2d

Description: Lemma for lclkr . (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2a.h H=LHypK
lclkrlem2a.o ˙=ocHKW
lclkrlem2a.u U=DVecHKW
lclkrlem2a.v V=BaseU
lclkrlem2a.z 0˙=0U
lclkrlem2a.p ˙=LSSumU
lclkrlem2a.n N=LSpanU
lclkrlem2a.a A=LSAtomsU
lclkrlem2a.k φKHLWH
lclkrlem2a.b φBV0˙
lclkrlem2a.x φXV0˙
lclkrlem2a.y φYV0˙
lclkrlem2a.e φ˙X˙Y
lclkrlem2b.da φ¬X˙B¬Y˙B
lclkrlem2d.i I=DIsoHKW
Assertion lclkrlem2d φ˙X˙Y˙NBranI

Proof

Step Hyp Ref Expression
1 lclkrlem2a.h H=LHypK
2 lclkrlem2a.o ˙=ocHKW
3 lclkrlem2a.u U=DVecHKW
4 lclkrlem2a.v V=BaseU
5 lclkrlem2a.z 0˙=0U
6 lclkrlem2a.p ˙=LSSumU
7 lclkrlem2a.n N=LSpanU
8 lclkrlem2a.a A=LSAtomsU
9 lclkrlem2a.k φKHLWH
10 lclkrlem2a.b φBV0˙
11 lclkrlem2a.x φXV0˙
12 lclkrlem2a.y φYV0˙
13 lclkrlem2a.e φ˙X˙Y
14 lclkrlem2b.da φ¬X˙B¬Y˙B
15 lclkrlem2d.i I=DIsoHKW
16 11 eldifad φXV
17 16 snssd φXV
18 1 15 3 4 2 dochcl KHLWHXV˙XranI
19 9 17 18 syl2anc φ˙XranI
20 12 eldifad φYV
21 20 snssd φYV
22 1 15 3 4 2 dochcl KHLWHYV˙YranI
23 9 21 22 syl2anc φ˙YranI
24 1 15 dihmeetcl KHLWH˙XranI˙YranI˙X˙YranI
25 9 19 23 24 syl12anc φ˙X˙YranI
26 10 eldifad φBV
27 1 3 4 6 7 15 9 25 26 dihsmsprn φ˙X˙Y˙NBranI