Metamath Proof Explorer


Theorem lclkrlem2d

Description: Lemma for lclkr . (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2a.h H = LHyp K
lclkrlem2a.o ˙ = ocH K W
lclkrlem2a.u U = DVecH K W
lclkrlem2a.v V = Base U
lclkrlem2a.z 0 ˙ = 0 U
lclkrlem2a.p ˙ = LSSum U
lclkrlem2a.n N = LSpan U
lclkrlem2a.a A = LSAtoms U
lclkrlem2a.k φ K HL W H
lclkrlem2a.b φ B V 0 ˙
lclkrlem2a.x φ X V 0 ˙
lclkrlem2a.y φ Y V 0 ˙
lclkrlem2a.e φ ˙ X ˙ Y
lclkrlem2b.da φ ¬ X ˙ B ¬ Y ˙ B
lclkrlem2d.i I = DIsoH K W
Assertion lclkrlem2d φ ˙ X ˙ Y ˙ N B ran I

Proof

Step Hyp Ref Expression
1 lclkrlem2a.h H = LHyp K
2 lclkrlem2a.o ˙ = ocH K W
3 lclkrlem2a.u U = DVecH K W
4 lclkrlem2a.v V = Base U
5 lclkrlem2a.z 0 ˙ = 0 U
6 lclkrlem2a.p ˙ = LSSum U
7 lclkrlem2a.n N = LSpan U
8 lclkrlem2a.a A = LSAtoms U
9 lclkrlem2a.k φ K HL W H
10 lclkrlem2a.b φ B V 0 ˙
11 lclkrlem2a.x φ X V 0 ˙
12 lclkrlem2a.y φ Y V 0 ˙
13 lclkrlem2a.e φ ˙ X ˙ Y
14 lclkrlem2b.da φ ¬ X ˙ B ¬ Y ˙ B
15 lclkrlem2d.i I = DIsoH K W
16 11 eldifad φ X V
17 16 snssd φ X V
18 1 15 3 4 2 dochcl K HL W H X V ˙ X ran I
19 9 17 18 syl2anc φ ˙ X ran I
20 12 eldifad φ Y V
21 20 snssd φ Y V
22 1 15 3 4 2 dochcl K HL W H Y V ˙ Y ran I
23 9 21 22 syl2anc φ ˙ Y ran I
24 1 15 dihmeetcl K HL W H ˙ X ran I ˙ Y ran I ˙ X ˙ Y ran I
25 9 19 23 24 syl12anc φ ˙ X ˙ Y ran I
26 10 eldifad φ B V
27 1 3 4 6 7 15 9 25 26 dihsmsprn φ ˙ X ˙ Y ˙ N B ran I