| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2a.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lclkrlem2a.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lclkrlem2a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lclkrlem2a.v |
|- V = ( Base ` U ) |
| 5 |
|
lclkrlem2a.z |
|- .0. = ( 0g ` U ) |
| 6 |
|
lclkrlem2a.p |
|- .(+) = ( LSSum ` U ) |
| 7 |
|
lclkrlem2a.n |
|- N = ( LSpan ` U ) |
| 8 |
|
lclkrlem2a.a |
|- A = ( LSAtoms ` U ) |
| 9 |
|
lclkrlem2a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
lclkrlem2a.b |
|- ( ph -> B e. ( V \ { .0. } ) ) |
| 11 |
|
lclkrlem2a.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 12 |
|
lclkrlem2a.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 13 |
|
lclkrlem2a.e |
|- ( ph -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) |
| 14 |
|
lclkrlem2b.da |
|- ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) |
| 15 |
|
lclkrlem2d.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 16 |
11
|
eldifad |
|- ( ph -> X e. V ) |
| 17 |
16
|
snssd |
|- ( ph -> { X } C_ V ) |
| 18 |
1 15 3 4 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ran I ) |
| 19 |
9 17 18
|
syl2anc |
|- ( ph -> ( ._|_ ` { X } ) e. ran I ) |
| 20 |
12
|
eldifad |
|- ( ph -> Y e. V ) |
| 21 |
20
|
snssd |
|- ( ph -> { Y } C_ V ) |
| 22 |
1 15 3 4 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ { Y } C_ V ) -> ( ._|_ ` { Y } ) e. ran I ) |
| 23 |
9 21 22
|
syl2anc |
|- ( ph -> ( ._|_ ` { Y } ) e. ran I ) |
| 24 |
1 15
|
dihmeetcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ._|_ ` { X } ) e. ran I /\ ( ._|_ ` { Y } ) e. ran I ) ) -> ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) e. ran I ) |
| 25 |
9 19 23 24
|
syl12anc |
|- ( ph -> ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) e. ran I ) |
| 26 |
10
|
eldifad |
|- ( ph -> B e. V ) |
| 27 |
1 3 4 6 7 15 9 25 26
|
dihsmsprn |
|- ( ph -> ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) e. ran I ) |