| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2a.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2a.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2a.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2a.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2a.z |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | lclkrlem2a.p |  |-  .(+) = ( LSSum ` U ) | 
						
							| 7 |  | lclkrlem2a.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | lclkrlem2a.a |  |-  A = ( LSAtoms ` U ) | 
						
							| 9 |  | lclkrlem2a.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | lclkrlem2a.b |  |-  ( ph -> B e. ( V \ { .0. } ) ) | 
						
							| 11 |  | lclkrlem2a.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 12 |  | lclkrlem2a.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 13 |  | lclkrlem2a.e |  |-  ( ph -> ( ._|_ ` { X } ) =/= ( ._|_ ` { Y } ) ) | 
						
							| 14 |  | lclkrlem2b.da |  |-  ( ph -> ( -. X e. ( ._|_ ` { B } ) \/ -. Y e. ( ._|_ ` { B } ) ) ) | 
						
							| 15 |  | lclkrlem2d.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 16 | 11 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 17 | 16 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 18 | 1 15 3 4 2 | dochcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ran I ) | 
						
							| 19 | 9 17 18 | syl2anc |  |-  ( ph -> ( ._|_ ` { X } ) e. ran I ) | 
						
							| 20 | 12 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 21 | 20 | snssd |  |-  ( ph -> { Y } C_ V ) | 
						
							| 22 | 1 15 3 4 2 | dochcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ { Y } C_ V ) -> ( ._|_ ` { Y } ) e. ran I ) | 
						
							| 23 | 9 21 22 | syl2anc |  |-  ( ph -> ( ._|_ ` { Y } ) e. ran I ) | 
						
							| 24 | 1 15 | dihmeetcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ._|_ ` { X } ) e. ran I /\ ( ._|_ ` { Y } ) e. ran I ) ) -> ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) e. ran I ) | 
						
							| 25 | 9 19 23 24 | syl12anc |  |-  ( ph -> ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) e. ran I ) | 
						
							| 26 | 10 | eldifad |  |-  ( ph -> B e. V ) | 
						
							| 27 | 1 3 4 6 7 15 9 25 26 | dihsmsprn |  |-  ( ph -> ( ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) .(+) ( N ` { B } ) ) e. ran I ) |