| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2e.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrlem2e.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrlem2e.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrlem2e.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | lclkrlem2e.z |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | lclkrlem2e.f |  |-  F = ( LFnl ` U ) | 
						
							| 7 |  | lclkrlem2e.l |  |-  L = ( LKer ` U ) | 
						
							| 8 |  | lclkrlem2e.d |  |-  D = ( LDual ` U ) | 
						
							| 9 |  | lclkrlem2e.p |  |-  .+ = ( +g ` D ) | 
						
							| 10 |  | lclkrlem2e.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | lclkrlem2e.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 12 |  | lclkrlem2e.e |  |-  ( ph -> E e. F ) | 
						
							| 13 |  | lclkrlem2e.g |  |-  ( ph -> G e. F ) | 
						
							| 14 |  | lclkrlem2e.le |  |-  ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 15 |  | lclkrlem2e.ne |  |-  ( ph -> ( L ` E ) = ( L ` G ) ) | 
						
							| 16 | 10 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 | 11 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 18 | 17 | snssd |  |-  ( ph -> { X } C_ V ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> { X } C_ V ) | 
						
							| 20 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 21 | 1 20 3 4 2 | dochcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 22 | 16 19 21 | syl2anc |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 23 | 1 20 2 | dochoc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) | 
						
							| 24 | 16 22 23 | syl2anc |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) | 
						
							| 25 | 14 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) | 
						
							| 26 |  | inidm |  |-  ( ( L ` E ) i^i ( L ` E ) ) = ( L ` E ) | 
						
							| 27 | 15 | ineq2d |  |-  ( ph -> ( ( L ` E ) i^i ( L ` E ) ) = ( ( L ` E ) i^i ( L ` G ) ) ) | 
						
							| 28 | 26 27 | eqtr3id |  |-  ( ph -> ( L ` E ) = ( ( L ` E ) i^i ( L ` G ) ) ) | 
						
							| 29 | 1 3 10 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 30 | 6 7 8 9 29 12 13 | lkrin |  |-  ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 31 | 28 30 | eqsstrd |  |-  ( ph -> ( L ` E ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) C_ ( L ` ( E .+ G ) ) ) | 
						
							| 33 |  | eqid |  |-  ( LSHyp ` U ) = ( LSHyp ` U ) | 
						
							| 34 | 1 3 10 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> U e. LVec ) | 
						
							| 36 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 37 | 1 3 2 4 36 10 18 | dochocsp |  |-  ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) | 
						
							| 39 | 25 38 | eqtr4d |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) = ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) | 
						
							| 40 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 41 | 4 36 5 40 29 11 | lsatlspsn |  |-  ( ph -> ( ( LSpan ` U ) ` { X } ) e. ( LSAtoms ` U ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ( LSpan ` U ) ` { X } ) e. ( LSAtoms ` U ) ) | 
						
							| 43 | 1 3 2 40 33 16 42 | dochsatshp |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) e. ( LSHyp ` U ) ) | 
						
							| 44 | 39 43 | eqeltrd |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) e. ( LSHyp ` U ) ) | 
						
							| 45 |  | simpr |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) | 
						
							| 46 | 33 35 44 45 | lshpcmp |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ( L ` E ) C_ ( L ` ( E .+ G ) ) <-> ( L ` E ) = ( L ` ( E .+ G ) ) ) ) | 
						
							| 47 | 32 46 | mpbid |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) = ( L ` ( E .+ G ) ) ) | 
						
							| 48 | 25 47 | eqtr3d |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` { X } ) = ( L ` ( E .+ G ) ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` { X } ) ) = ( ._|_ ` ( L ` ( E .+ G ) ) ) ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) ) | 
						
							| 51 | 24 50 48 | 3eqtr3d |  |-  ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) | 
						
							| 52 | 51 | ex |  |-  ( ph -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) | 
						
							| 53 | 1 3 2 4 10 | dochoc1 |  |-  ( ph -> ( ._|_ ` ( ._|_ ` V ) ) = V ) | 
						
							| 54 |  | 2fveq3 |  |-  ( ( L ` ( E .+ G ) ) = V -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) | 
						
							| 55 |  | id |  |-  ( ( L ` ( E .+ G ) ) = V -> ( L ` ( E .+ G ) ) = V ) | 
						
							| 56 | 54 55 | eqeq12d |  |-  ( ( L ` ( E .+ G ) ) = V -> ( ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) <-> ( ._|_ ` ( ._|_ ` V ) ) = V ) ) | 
						
							| 57 | 53 56 | syl5ibrcom |  |-  ( ph -> ( ( L ` ( E .+ G ) ) = V -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) | 
						
							| 58 | 6 8 9 29 12 13 | ldualvaddcl |  |-  ( ph -> ( E .+ G ) e. F ) | 
						
							| 59 | 4 33 6 7 34 58 | lkrshpor |  |-  ( ph -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) \/ ( L ` ( E .+ G ) ) = V ) ) | 
						
							| 60 | 52 57 59 | mpjaod |  |-  ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |