Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2e.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrlem2e.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrlem2e.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrlem2e.v |
|- V = ( Base ` U ) |
5 |
|
lclkrlem2e.z |
|- .0. = ( 0g ` U ) |
6 |
|
lclkrlem2e.f |
|- F = ( LFnl ` U ) |
7 |
|
lclkrlem2e.l |
|- L = ( LKer ` U ) |
8 |
|
lclkrlem2e.d |
|- D = ( LDual ` U ) |
9 |
|
lclkrlem2e.p |
|- .+ = ( +g ` D ) |
10 |
|
lclkrlem2e.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
lclkrlem2e.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
12 |
|
lclkrlem2e.e |
|- ( ph -> E e. F ) |
13 |
|
lclkrlem2e.g |
|- ( ph -> G e. F ) |
14 |
|
lclkrlem2e.le |
|- ( ph -> ( L ` E ) = ( ._|_ ` { X } ) ) |
15 |
|
lclkrlem2e.ne |
|- ( ph -> ( L ` E ) = ( L ` G ) ) |
16 |
10
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
11
|
eldifad |
|- ( ph -> X e. V ) |
18 |
17
|
snssd |
|- ( ph -> { X } C_ V ) |
19 |
18
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> { X } C_ V ) |
20 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
21 |
1 20 3 4 2
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ { X } C_ V ) -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
22 |
16 19 21
|
syl2anc |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
23 |
1 20 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) |
24 |
16 22 23
|
syl2anc |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` { X } ) ) |
25 |
14
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) = ( ._|_ ` { X } ) ) |
26 |
|
inidm |
|- ( ( L ` E ) i^i ( L ` E ) ) = ( L ` E ) |
27 |
15
|
ineq2d |
|- ( ph -> ( ( L ` E ) i^i ( L ` E ) ) = ( ( L ` E ) i^i ( L ` G ) ) ) |
28 |
26 27
|
eqtr3id |
|- ( ph -> ( L ` E ) = ( ( L ` E ) i^i ( L ` G ) ) ) |
29 |
1 3 10
|
dvhlmod |
|- ( ph -> U e. LMod ) |
30 |
6 7 8 9 29 12 13
|
lkrin |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E .+ G ) ) ) |
31 |
28 30
|
eqsstrd |
|- ( ph -> ( L ` E ) C_ ( L ` ( E .+ G ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) C_ ( L ` ( E .+ G ) ) ) |
33 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
34 |
1 3 10
|
dvhlvec |
|- ( ph -> U e. LVec ) |
35 |
34
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> U e. LVec ) |
36 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
37 |
1 3 2 4 36 10 18
|
dochocsp |
|- ( ph -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) = ( ._|_ ` { X } ) ) |
39 |
25 38
|
eqtr4d |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) = ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) ) |
40 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
41 |
4 36 5 40 29 11
|
lsatlspsn |
|- ( ph -> ( ( LSpan ` U ) ` { X } ) e. ( LSAtoms ` U ) ) |
42 |
41
|
adantr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ( LSpan ` U ) ` { X } ) e. ( LSAtoms ` U ) ) |
43 |
1 3 2 40 33 16 42
|
dochsatshp |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ( LSpan ` U ) ` { X } ) ) e. ( LSHyp ` U ) ) |
44 |
39 43
|
eqeltrd |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) e. ( LSHyp ` U ) ) |
45 |
|
simpr |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) |
46 |
33 35 44 45
|
lshpcmp |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ( L ` E ) C_ ( L ` ( E .+ G ) ) <-> ( L ` E ) = ( L ` ( E .+ G ) ) ) ) |
47 |
32 46
|
mpbid |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( L ` E ) = ( L ` ( E .+ G ) ) ) |
48 |
25 47
|
eqtr3d |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` { X } ) = ( L ` ( E .+ G ) ) ) |
49 |
48
|
fveq2d |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` { X } ) ) = ( ._|_ ` ( L ` ( E .+ G ) ) ) ) |
50 |
49
|
fveq2d |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` { X } ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) ) |
51 |
24 50 48
|
3eqtr3d |
|- ( ( ph /\ ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |
52 |
51
|
ex |
|- ( ph -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) |
53 |
1 3 2 4 10
|
dochoc1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` V ) ) = V ) |
54 |
|
2fveq3 |
|- ( ( L ` ( E .+ G ) ) = V -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( ._|_ ` ( ._|_ ` V ) ) ) |
55 |
|
id |
|- ( ( L ` ( E .+ G ) ) = V -> ( L ` ( E .+ G ) ) = V ) |
56 |
54 55
|
eqeq12d |
|- ( ( L ` ( E .+ G ) ) = V -> ( ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) <-> ( ._|_ ` ( ._|_ ` V ) ) = V ) ) |
57 |
53 56
|
syl5ibrcom |
|- ( ph -> ( ( L ` ( E .+ G ) ) = V -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) ) |
58 |
6 8 9 29 12 13
|
ldualvaddcl |
|- ( ph -> ( E .+ G ) e. F ) |
59 |
4 33 6 7 34 58
|
lkrshpor |
|- ( ph -> ( ( L ` ( E .+ G ) ) e. ( LSHyp ` U ) \/ ( L ` ( E .+ G ) ) = V ) ) |
60 |
52 57 59
|
mpjaod |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( E .+ G ) ) ) ) = ( L ` ( E .+ G ) ) ) |