| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2e.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lclkrlem2e.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lclkrlem2e.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkrlem2e.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lclkrlem2e.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
lclkrlem2e.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 7 |
|
lclkrlem2e.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 8 |
|
lclkrlem2e.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 9 |
|
lclkrlem2e.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 10 |
|
lclkrlem2e.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
|
lclkrlem2e.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
lclkrlem2e.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
| 13 |
|
lclkrlem2e.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 14 |
|
lclkrlem2e.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 15 |
|
lclkrlem2e.ne |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( 𝐿 ‘ 𝐺 ) ) |
| 16 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 18 |
17
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → { 𝑋 } ⊆ 𝑉 ) |
| 20 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 21 |
1 20 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 22 |
16 19 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 23 |
1 20 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 24 |
16 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 25 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 26 |
|
inidm |
⊢ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐸 ) ) = ( 𝐿 ‘ 𝐸 ) |
| 27 |
15
|
ineq2d |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐸 ) ) = ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) |
| 28 |
26 27
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) |
| 29 |
1 3 10
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 30 |
6 7 8 9 29 12 13
|
lkrin |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 31 |
28 30
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐸 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 33 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
| 34 |
1 3 10
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → 𝑈 ∈ LVec ) |
| 36 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
| 37 |
1 3 2 4 36 10 18
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 39 |
25 38
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) |
| 40 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
| 41 |
4 36 5 40 29 11
|
lsatlspsn |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
| 43 |
1 3 2 40 33 16 42
|
dochsatshp |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 44 |
39 43
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐸 ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 45 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 46 |
33 35 44 45
|
lshpcmp |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ( 𝐿 ‘ 𝐸 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( 𝐿 ‘ 𝐸 ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 47 |
32 46
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐸 ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 48 |
25 47
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ { 𝑋 } ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) = ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 50 |
49
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) ) |
| 51 |
24 50 48
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 52 |
51
|
ex |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 53 |
1 3 2 4 10
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
| 54 |
|
2fveq3 |
⊢ ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) ) |
| 55 |
|
id |
⊢ ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) |
| 56 |
54 55
|
eqeq12d |
⊢ ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) ) |
| 57 |
53 56
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 58 |
6 8 9 29 12 13
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
| 59 |
4 33 6 7 34 58
|
lkrshpor |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ∨ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) ) |
| 60 |
52 57 59
|
mpjaod |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |