Metamath Proof Explorer


Theorem lclkrlem2e

Description: Lemma for lclkr . The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2e.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrlem2e.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2e.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrlem2e.v 𝑉 = ( Base ‘ 𝑈 )
lclkrlem2e.z 0 = ( 0g𝑈 )
lclkrlem2e.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrlem2e.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrlem2e.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrlem2e.p + = ( +g𝐷 )
lclkrlem2e.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrlem2e.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lclkrlem2e.e ( 𝜑𝐸𝐹 )
lclkrlem2e.g ( 𝜑𝐺𝐹 )
lclkrlem2e.le ( 𝜑 → ( 𝐿𝐸 ) = ( ‘ { 𝑋 } ) )
lclkrlem2e.ne ( 𝜑 → ( 𝐿𝐸 ) = ( 𝐿𝐺 ) )
Assertion lclkrlem2e ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 lclkrlem2e.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lclkrlem2e.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lclkrlem2e.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lclkrlem2e.v 𝑉 = ( Base ‘ 𝑈 )
5 lclkrlem2e.z 0 = ( 0g𝑈 )
6 lclkrlem2e.f 𝐹 = ( LFnl ‘ 𝑈 )
7 lclkrlem2e.l 𝐿 = ( LKer ‘ 𝑈 )
8 lclkrlem2e.d 𝐷 = ( LDual ‘ 𝑈 )
9 lclkrlem2e.p + = ( +g𝐷 )
10 lclkrlem2e.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 lclkrlem2e.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
12 lclkrlem2e.e ( 𝜑𝐸𝐹 )
13 lclkrlem2e.g ( 𝜑𝐺𝐹 )
14 lclkrlem2e.le ( 𝜑 → ( 𝐿𝐸 ) = ( ‘ { 𝑋 } ) )
15 lclkrlem2e.ne ( 𝜑 → ( 𝐿𝐸 ) = ( 𝐿𝐺 ) )
16 10 adantr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 11 eldifad ( 𝜑𝑋𝑉 )
18 17 snssd ( 𝜑 → { 𝑋 } ⊆ 𝑉 )
19 18 adantr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → { 𝑋 } ⊆ 𝑉 )
20 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
21 1 20 3 4 2 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ) → ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
22 16 19 21 syl2anc ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
23 1 20 2 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ‘ { 𝑋 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ‘ ( ‘ ( ‘ { 𝑋 } ) ) ) = ( ‘ { 𝑋 } ) )
24 16 22 23 syl2anc ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ ( ‘ ( ‘ { 𝑋 } ) ) ) = ( ‘ { 𝑋 } ) )
25 14 adantr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿𝐸 ) = ( ‘ { 𝑋 } ) )
26 inidm ( ( 𝐿𝐸 ) ∩ ( 𝐿𝐸 ) ) = ( 𝐿𝐸 )
27 15 ineq2d ( 𝜑 → ( ( 𝐿𝐸 ) ∩ ( 𝐿𝐸 ) ) = ( ( 𝐿𝐸 ) ∩ ( 𝐿𝐺 ) ) )
28 26 27 eqtr3id ( 𝜑 → ( 𝐿𝐸 ) = ( ( 𝐿𝐸 ) ∩ ( 𝐿𝐺 ) ) )
29 1 3 10 dvhlmod ( 𝜑𝑈 ∈ LMod )
30 6 7 8 9 29 12 13 lkrin ( 𝜑 → ( ( 𝐿𝐸 ) ∩ ( 𝐿𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
31 28 30 eqsstrd ( 𝜑 → ( 𝐿𝐸 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
32 31 adantr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿𝐸 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
33 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
34 1 3 10 dvhlvec ( 𝜑𝑈 ∈ LVec )
35 34 adantr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → 𝑈 ∈ LVec )
36 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
37 1 3 2 4 36 10 18 dochocsp ( 𝜑 → ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ‘ { 𝑋 } ) )
38 37 adantr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ‘ { 𝑋 } ) )
39 25 38 eqtr4d ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿𝐸 ) = ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) )
40 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
41 4 36 5 40 29 11 lsatlspsn ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) )
42 41 adantr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) )
43 1 3 2 40 33 16 42 dochsatshp ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ∈ ( LSHyp ‘ 𝑈 ) )
44 39 43 eqeltrd ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿𝐸 ) ∈ ( LSHyp ‘ 𝑈 ) )
45 simpr ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) )
46 33 35 44 45 lshpcmp ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ( 𝐿𝐸 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( 𝐿𝐸 ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) )
47 32 46 mpbid ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿𝐸 ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
48 25 47 eqtr3d ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ { 𝑋 } ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
49 48 fveq2d ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ ( ‘ { 𝑋 } ) ) = ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) )
50 49 fveq2d ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ ( ‘ ( ‘ { 𝑋 } ) ) ) = ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) )
51 24 50 48 3eqtr3d ( ( 𝜑 ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )
52 51 ex ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) )
53 1 3 2 4 10 dochoc1 ( 𝜑 → ( ‘ ( 𝑉 ) ) = 𝑉 )
54 2fveq3 ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ‘ ( 𝑉 ) ) )
55 id ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 )
56 54 55 eqeq12d ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ‘ ( 𝑉 ) ) = 𝑉 ) )
57 53 56 syl5ibrcom ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) )
58 6 8 9 29 12 13 ldualvaddcl ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 )
59 4 33 6 7 34 58 lkrshpor ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ∨ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) )
60 52 57 59 mpjaod ( 𝜑 → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) )