| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2f.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2f.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2f.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2f.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2f.q | ⊢ 𝑄  =  ( 0g ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2f.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2f.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2f.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2f.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 11 |  | lclkrlem2f.j | ⊢ 𝐽  =  ( LSHyp ‘ 𝑈 ) | 
						
							| 12 |  | lclkrlem2f.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 13 |  | lclkrlem2f.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 14 |  | lclkrlem2f.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 15 |  | lclkrlem2f.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | lclkrlem2f.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 |  | lclkrlem2f.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 18 |  | lclkrlem2f.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 19 |  | lclkrlem2f.le | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 20 |  | lclkrlem2f.lg | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 21 |  | lclkrlem2f.kb | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) | 
						
							| 22 |  | lclkrlem2f.nx | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 23 |  | lclkrlem2f.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 24 |  | lclkrlem2f.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 25 |  | lclkrlem2f.ne | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  ≠  ( 𝐿 ‘ 𝐺 ) ) | 
						
							| 26 |  | lclkrlem2f.lp | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  𝐽 ) | 
						
							| 27 | 1 3 15 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 28 | 10 12 13 14 27 17 18 | lkrin | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 29 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 30 | 29 11 27 26 | lshplss | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 31 | 10 13 14 27 17 18 | ldualvaddcl | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐹 ) | 
						
							| 32 | 16 | eldifad | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 33 | 4 5 6 10 12 27 31 32 | ellkr2 | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ↔  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) ) | 
						
							| 34 | 21 33 | mpbird | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 35 | 29 9 27 30 34 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐵 } )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 36 | 29 | lsssssubg | ⊢ ( 𝑈  ∈  LMod  →  ( LSubSp ‘ 𝑈 )  ⊆  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 37 | 27 36 | syl | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝑈 )  ⊆  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 38 | 10 12 29 | lkrlss | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐸  ∈  𝐹 )  →  ( 𝐿 ‘ 𝐸 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 39 | 27 17 38 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 40 | 10 12 29 | lkrlss | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐺  ∈  𝐹 )  →  ( 𝐿 ‘ 𝐺 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 41 | 27 18 40 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 42 | 29 | lssincl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝐿 ‘ 𝐸 )  ∈  ( LSubSp ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐺 )  ∈  ( LSubSp ‘ 𝑈 ) )  →  ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 43 | 27 39 41 42 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 44 | 37 43 | sseldd | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 45 | 4 29 9 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐵  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝐵 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 46 | 27 32 45 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐵 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 47 | 37 46 | sseldd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐵 } )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 48 | 37 30 | sseldd | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 49 | 8 | lsmlub | ⊢ ( ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ∈  ( SubGrp ‘ 𝑈 )  ∧  ( 𝑁 ‘ { 𝐵 } )  ∈  ( SubGrp ‘ 𝑈 )  ∧  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ( SubGrp ‘ 𝑈 ) )  →  ( ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∧  ( 𝑁 ‘ { 𝐵 } )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) )  ↔  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) | 
						
							| 50 | 44 47 48 49 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∧  ( 𝑁 ‘ { 𝐵 } )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) )  ↔  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) | 
						
							| 51 | 28 35 50 | mpbi2and | ⊢ ( 𝜑  →  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) |