| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2f.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lclkrlem2f.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lclkrlem2f.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkrlem2f.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lclkrlem2f.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 6 |
|
lclkrlem2f.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
| 7 |
|
lclkrlem2f.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 8 |
|
lclkrlem2f.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 9 |
|
lclkrlem2f.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 10 |
|
lclkrlem2f.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 11 |
|
lclkrlem2f.j |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
| 12 |
|
lclkrlem2f.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 13 |
|
lclkrlem2f.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 14 |
|
lclkrlem2f.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 15 |
|
lclkrlem2f.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 16 |
|
lclkrlem2f.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 17 |
|
lclkrlem2f.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
| 18 |
|
lclkrlem2f.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 19 |
|
lclkrlem2f.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 20 |
|
lclkrlem2f.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 21 |
|
lclkrlem2f.kb |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 ) |
| 22 |
|
lclkrlem2f.nx |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 23 |
|
lclkrlem2f.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 24 |
|
lclkrlem2f.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 25 |
|
lclkrlem2f.ne |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ≠ ( 𝐿 ‘ 𝐺 ) ) |
| 26 |
|
lclkrlem2f.lp |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ 𝐽 ) |
| 27 |
1 3 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 28 |
10 12 13 14 27 17 18
|
lkrin |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 29 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 30 |
29 11 27 26
|
lshplss |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 31 |
10 13 14 27 17 18
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
| 32 |
16
|
eldifad |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 33 |
4 5 6 10 12 27 31 32
|
ellkr2 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 ) ) |
| 34 |
21 33
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 35 |
29 9 27 30 34
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐵 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 36 |
29
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 37 |
27 36
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 38 |
10 12 29
|
lkrlss |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐸 ∈ 𝐹 ) → ( 𝐿 ‘ 𝐸 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 39 |
27 17 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 40 |
10 12 29
|
lkrlss |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 41 |
27 18 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 42 |
29
|
lssincl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐿 ‘ 𝐸 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 43 |
27 39 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 44 |
37 43
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 45 |
4 29 9
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 46 |
27 32 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 47 |
37 46
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐵 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 48 |
37 30
|
sseldd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 49 |
8
|
lsmlub |
⊢ ( ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝐵 } ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∧ ( 𝑁 ‘ { 𝐵 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ↔ ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 50 |
44 47 48 49
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∧ ( 𝑁 ‘ { 𝐵 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ↔ ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 51 |
28 35 50
|
mpbi2and |
⊢ ( 𝜑 → ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |