Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2f.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2f.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2f.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lclkrlem2f.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
6 |
|
lclkrlem2f.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
7 |
|
lclkrlem2f.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
lclkrlem2f.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
lclkrlem2f.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
lclkrlem2f.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lclkrlem2f.j |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
12 |
|
lclkrlem2f.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
13 |
|
lclkrlem2f.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
14 |
|
lclkrlem2f.p |
⊢ + = ( +g ‘ 𝐷 ) |
15 |
|
lclkrlem2f.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
lclkrlem2f.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
lclkrlem2f.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
18 |
|
lclkrlem2f.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
19 |
|
lclkrlem2f.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
20 |
|
lclkrlem2f.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
21 |
|
lclkrlem2f.kb |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 ) |
22 |
|
lclkrlem2f.nx |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
23 |
|
lclkrlem2f.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
24 |
|
lclkrlem2f.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
25 |
|
lclkrlem2f.ne |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ≠ ( 𝐿 ‘ 𝐺 ) ) |
26 |
|
lclkrlem2f.lp |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ 𝐽 ) |
27 |
1 3 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
28 |
10 12 13 14 27 17 18
|
lkrin |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
29 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
30 |
29 11 27 26
|
lshplss |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
31 |
10 13 14 27 17 18
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
32 |
16
|
eldifad |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
33 |
4 5 6 10 12 27 31 32
|
ellkr2 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 ) ) |
34 |
21 33
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
35 |
29 9 27 30 34
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐵 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
36 |
29
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
37 |
27 36
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
38 |
10 12 29
|
lkrlss |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐸 ∈ 𝐹 ) → ( 𝐿 ‘ 𝐸 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
39 |
27 17 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
40 |
10 12 29
|
lkrlss |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
41 |
27 18 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
42 |
29
|
lssincl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐿 ‘ 𝐸 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
43 |
27 39 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
44 |
37 43
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
45 |
4 29 9
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
46 |
27 32 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐵 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
47 |
37 46
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐵 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
48 |
37 30
|
sseldd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
49 |
8
|
lsmlub |
⊢ ( ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝐵 } ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∧ ( 𝑁 ‘ { 𝐵 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ↔ ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
50 |
44 47 48 49
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∧ ( 𝑁 ‘ { 𝐵 } ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ↔ ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
51 |
28 35 50
|
mpbi2and |
⊢ ( 𝜑 → ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |