| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrlem2f.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrlem2f.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrlem2f.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrlem2f.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | lclkrlem2f.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | lclkrlem2f.q | ⊢ 𝑄  =  ( 0g ‘ 𝑆 ) | 
						
							| 7 |  | lclkrlem2f.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | lclkrlem2f.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 9 |  | lclkrlem2f.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 10 |  | lclkrlem2f.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 11 |  | lclkrlem2f.j | ⊢ 𝐽  =  ( LSHyp ‘ 𝑈 ) | 
						
							| 12 |  | lclkrlem2f.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 13 |  | lclkrlem2f.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 14 |  | lclkrlem2f.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 15 |  | lclkrlem2f.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | lclkrlem2f.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 17 |  | lclkrlem2f.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 18 |  | lclkrlem2f.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 19 |  | lclkrlem2f.le | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  =  (  ⊥  ‘ { 𝑋 } ) ) | 
						
							| 20 |  | lclkrlem2f.lg | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 21 |  | lclkrlem2f.kb | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝐺 ) ‘ 𝐵 )  =  𝑄 ) | 
						
							| 22 |  | lclkrlem2f.nx | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  (  ⊥  ‘ { 𝐵 } )  ∨  ¬  𝑌  ∈  (  ⊥  ‘ { 𝐵 } ) ) ) | 
						
							| 23 |  | lclkrlem2f.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 24 |  | lclkrlem2f.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 25 |  | lclkrlem2f.ne | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  ≠  ( 𝐿 ‘ 𝐺 ) ) | 
						
							| 26 |  | lclkrlem2f.lp | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  𝐽 ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | lclkrlem2f | ⊢ ( 𝜑  →  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 28 | 1 3 15 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 29 | 19 20 | ineq12d | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  =  ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  =  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( LSAtoms ‘ 𝑈 )  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 32 | 25 19 20 | 3netr3d | ⊢ ( 𝜑  →  (  ⊥  ‘ { 𝑋 } )  ≠  (  ⊥  ‘ { 𝑌 } ) ) | 
						
							| 33 | 1 2 3 4 7 8 9 31 15 16 23 24 32 22 11 | lclkrlem2c | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ∈  𝐽 ) | 
						
							| 34 | 30 33 | eqeltrd | ⊢ ( 𝜑  →  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ∈  𝐽 ) | 
						
							| 35 | 11 28 34 26 | lshpcmp | ⊢ ( 𝜑  →  ( ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ↔  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) | 
						
							| 36 | 27 35 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 38 | 1 2 3 4 7 8 9 31 15 16 23 24 32 22 37 | lclkrlem2d | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ { 𝑋 } )  ∩  (  ⊥  ‘ { 𝑌 } ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 39 | 30 38 | eqeltrd | ⊢ ( 𝜑  →  ( ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊕  ( 𝑁 ‘ { 𝐵 } ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 40 | 36 39 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 41 | 1 3 37 4 | dihrnss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ⊆  𝑉 ) | 
						
							| 42 | 15 40 41 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ⊆  𝑉 ) | 
						
							| 43 | 1 37 3 4 2 15 42 | dochoccl | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  ↔  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) ) | 
						
							| 44 | 40 43 | mpbid | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) )  =  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) |