Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2f.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrlem2f.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrlem2f.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrlem2f.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lclkrlem2f.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
6 |
|
lclkrlem2f.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
7 |
|
lclkrlem2f.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
lclkrlem2f.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
lclkrlem2f.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
lclkrlem2f.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lclkrlem2f.j |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
12 |
|
lclkrlem2f.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
13 |
|
lclkrlem2f.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
14 |
|
lclkrlem2f.p |
⊢ + = ( +g ‘ 𝐷 ) |
15 |
|
lclkrlem2f.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
lclkrlem2f.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
lclkrlem2f.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
18 |
|
lclkrlem2f.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
19 |
|
lclkrlem2f.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
20 |
|
lclkrlem2f.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
21 |
|
lclkrlem2f.kb |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝐵 ) = 𝑄 ) |
22 |
|
lclkrlem2f.nx |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝐵 } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { 𝐵 } ) ) ) |
23 |
|
lclkrlem2f.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
24 |
|
lclkrlem2f.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
25 |
|
lclkrlem2f.ne |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ≠ ( 𝐿 ‘ 𝐺 ) ) |
26 |
|
lclkrlem2f.lp |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ 𝐽 ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
lclkrlem2f |
⊢ ( 𝜑 → ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
28 |
1 3 15
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
29 |
19 20
|
ineq12d |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) = ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ) |
31 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
32 |
25 19 20
|
3netr3d |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ≠ ( ⊥ ‘ { 𝑌 } ) ) |
33 |
1 2 3 4 7 8 9 31 15 16 23 24 32 22 11
|
lclkrlem2c |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ∈ 𝐽 ) |
34 |
30 33
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ∈ 𝐽 ) |
35 |
11 28 34 26
|
lshpcmp |
⊢ ( 𝜑 → ( ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
36 |
27 35
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
37 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
38 |
1 2 3 4 7 8 9 31 15 16 23 24 32 22 37
|
lclkrlem2d |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
39 |
30 38
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊕ ( 𝑁 ‘ { 𝐵 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
40 |
36 39
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
41 |
1 3 37 4
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ⊆ 𝑉 ) |
42 |
15 40 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ⊆ 𝑉 ) |
43 |
1 37 3 4 2 15 42
|
dochoccl |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
44 |
40 43
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |