Description: Lemma for lclkr . Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2f.h | |
|
lclkrlem2f.o | |
||
lclkrlem2f.u | |
||
lclkrlem2f.v | |
||
lclkrlem2f.s | |
||
lclkrlem2f.q | |
||
lclkrlem2f.z | |
||
lclkrlem2f.a | |
||
lclkrlem2f.n | |
||
lclkrlem2f.f | |
||
lclkrlem2f.j | |
||
lclkrlem2f.l | |
||
lclkrlem2f.d | |
||
lclkrlem2f.p | |
||
lclkrlem2f.k | |
||
lclkrlem2f.b | |
||
lclkrlem2f.e | |
||
lclkrlem2f.g | |
||
lclkrlem2f.le | |
||
lclkrlem2f.lg | |
||
lclkrlem2f.kb | |
||
lclkrlem2f.nx | |
||
lclkrlem2f.x | |
||
lclkrlem2f.y | |
||
lclkrlem2f.ne | |
||
lclkrlem2f.lp | |
||
Assertion | lclkrlem2g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.h | |
|
2 | lclkrlem2f.o | |
|
3 | lclkrlem2f.u | |
|
4 | lclkrlem2f.v | |
|
5 | lclkrlem2f.s | |
|
6 | lclkrlem2f.q | |
|
7 | lclkrlem2f.z | |
|
8 | lclkrlem2f.a | |
|
9 | lclkrlem2f.n | |
|
10 | lclkrlem2f.f | |
|
11 | lclkrlem2f.j | |
|
12 | lclkrlem2f.l | |
|
13 | lclkrlem2f.d | |
|
14 | lclkrlem2f.p | |
|
15 | lclkrlem2f.k | |
|
16 | lclkrlem2f.b | |
|
17 | lclkrlem2f.e | |
|
18 | lclkrlem2f.g | |
|
19 | lclkrlem2f.le | |
|
20 | lclkrlem2f.lg | |
|
21 | lclkrlem2f.kb | |
|
22 | lclkrlem2f.nx | |
|
23 | lclkrlem2f.x | |
|
24 | lclkrlem2f.y | |
|
25 | lclkrlem2f.ne | |
|
26 | lclkrlem2f.lp | |
|
27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | lclkrlem2f | |
28 | 1 3 15 | dvhlvec | |
29 | 19 20 | ineq12d | |
30 | 29 | oveq1d | |
31 | eqid | |
|
32 | 25 19 20 | 3netr3d | |
33 | 1 2 3 4 7 8 9 31 15 16 23 24 32 22 11 | lclkrlem2c | |
34 | 30 33 | eqeltrd | |
35 | 11 28 34 26 | lshpcmp | |
36 | 27 35 | mpbid | |
37 | eqid | |
|
38 | 1 2 3 4 7 8 9 31 15 16 23 24 32 22 37 | lclkrlem2d | |
39 | 30 38 | eqeltrd | |
40 | 36 39 | eqeltrrd | |
41 | 1 3 37 4 | dihrnss | |
42 | 15 40 41 | syl2anc | |
43 | 1 37 3 4 2 15 42 | dochoccl | |
44 | 40 43 | mpbid | |