Metamath Proof Explorer


Theorem lclkrlem2g

Description: Lemma for lclkr . Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H=LHypK
lclkrlem2f.o ˙=ocHKW
lclkrlem2f.u U=DVecHKW
lclkrlem2f.v V=BaseU
lclkrlem2f.s S=ScalarU
lclkrlem2f.q Q=0S
lclkrlem2f.z 0˙=0U
lclkrlem2f.a ˙=LSSumU
lclkrlem2f.n N=LSpanU
lclkrlem2f.f F=LFnlU
lclkrlem2f.j J=LSHypU
lclkrlem2f.l L=LKerU
lclkrlem2f.d D=LDualU
lclkrlem2f.p +˙=+D
lclkrlem2f.k φKHLWH
lclkrlem2f.b φBV0˙
lclkrlem2f.e φEF
lclkrlem2f.g φGF
lclkrlem2f.le φLE=˙X
lclkrlem2f.lg φLG=˙Y
lclkrlem2f.kb φE+˙GB=Q
lclkrlem2f.nx φ¬X˙B¬Y˙B
lclkrlem2f.x φXV0˙
lclkrlem2f.y φYV0˙
lclkrlem2f.ne φLELG
lclkrlem2f.lp φLE+˙GJ
Assertion lclkrlem2g φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H=LHypK
2 lclkrlem2f.o ˙=ocHKW
3 lclkrlem2f.u U=DVecHKW
4 lclkrlem2f.v V=BaseU
5 lclkrlem2f.s S=ScalarU
6 lclkrlem2f.q Q=0S
7 lclkrlem2f.z 0˙=0U
8 lclkrlem2f.a ˙=LSSumU
9 lclkrlem2f.n N=LSpanU
10 lclkrlem2f.f F=LFnlU
11 lclkrlem2f.j J=LSHypU
12 lclkrlem2f.l L=LKerU
13 lclkrlem2f.d D=LDualU
14 lclkrlem2f.p +˙=+D
15 lclkrlem2f.k φKHLWH
16 lclkrlem2f.b φBV0˙
17 lclkrlem2f.e φEF
18 lclkrlem2f.g φGF
19 lclkrlem2f.le φLE=˙X
20 lclkrlem2f.lg φLG=˙Y
21 lclkrlem2f.kb φE+˙GB=Q
22 lclkrlem2f.nx φ¬X˙B¬Y˙B
23 lclkrlem2f.x φXV0˙
24 lclkrlem2f.y φYV0˙
25 lclkrlem2f.ne φLELG
26 lclkrlem2f.lp φLE+˙GJ
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 lclkrlem2f φLELG˙NBLE+˙G
28 1 3 15 dvhlvec φULVec
29 19 20 ineq12d φLELG=˙X˙Y
30 29 oveq1d φLELG˙NB=˙X˙Y˙NB
31 eqid LSAtomsU=LSAtomsU
32 25 19 20 3netr3d φ˙X˙Y
33 1 2 3 4 7 8 9 31 15 16 23 24 32 22 11 lclkrlem2c φ˙X˙Y˙NBJ
34 30 33 eqeltrd φLELG˙NBJ
35 11 28 34 26 lshpcmp φLELG˙NBLE+˙GLELG˙NB=LE+˙G
36 27 35 mpbid φLELG˙NB=LE+˙G
37 eqid DIsoHKW=DIsoHKW
38 1 2 3 4 7 8 9 31 15 16 23 24 32 22 37 lclkrlem2d φ˙X˙Y˙NBranDIsoHKW
39 30 38 eqeltrd φLELG˙NBranDIsoHKW
40 36 39 eqeltrrd φLE+˙GranDIsoHKW
41 1 3 37 4 dihrnss KHLWHLE+˙GranDIsoHKWLE+˙GV
42 15 40 41 syl2anc φLE+˙GV
43 1 37 3 4 2 15 42 dochoccl φLE+˙GranDIsoHKW˙˙LE+˙G=LE+˙G
44 40 43 mpbid φ˙˙LE+˙G=LE+˙G