Metamath Proof Explorer


Theorem lclkrlem2f

Description: Lemma for lclkr . Construct a closed hyperplane under the kernel of the sum. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H=LHypK
lclkrlem2f.o ˙=ocHKW
lclkrlem2f.u U=DVecHKW
lclkrlem2f.v V=BaseU
lclkrlem2f.s S=ScalarU
lclkrlem2f.q Q=0S
lclkrlem2f.z 0˙=0U
lclkrlem2f.a ˙=LSSumU
lclkrlem2f.n N=LSpanU
lclkrlem2f.f F=LFnlU
lclkrlem2f.j J=LSHypU
lclkrlem2f.l L=LKerU
lclkrlem2f.d D=LDualU
lclkrlem2f.p +˙=+D
lclkrlem2f.k φKHLWH
lclkrlem2f.b φBV0˙
lclkrlem2f.e φEF
lclkrlem2f.g φGF
lclkrlem2f.le φLE=˙X
lclkrlem2f.lg φLG=˙Y
lclkrlem2f.kb φE+˙GB=Q
lclkrlem2f.nx φ¬X˙B¬Y˙B
lclkrlem2f.x φXV0˙
lclkrlem2f.y φYV0˙
lclkrlem2f.ne φLELG
lclkrlem2f.lp φLE+˙GJ
Assertion lclkrlem2f φLELG˙NBLE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H=LHypK
2 lclkrlem2f.o ˙=ocHKW
3 lclkrlem2f.u U=DVecHKW
4 lclkrlem2f.v V=BaseU
5 lclkrlem2f.s S=ScalarU
6 lclkrlem2f.q Q=0S
7 lclkrlem2f.z 0˙=0U
8 lclkrlem2f.a ˙=LSSumU
9 lclkrlem2f.n N=LSpanU
10 lclkrlem2f.f F=LFnlU
11 lclkrlem2f.j J=LSHypU
12 lclkrlem2f.l L=LKerU
13 lclkrlem2f.d D=LDualU
14 lclkrlem2f.p +˙=+D
15 lclkrlem2f.k φKHLWH
16 lclkrlem2f.b φBV0˙
17 lclkrlem2f.e φEF
18 lclkrlem2f.g φGF
19 lclkrlem2f.le φLE=˙X
20 lclkrlem2f.lg φLG=˙Y
21 lclkrlem2f.kb φE+˙GB=Q
22 lclkrlem2f.nx φ¬X˙B¬Y˙B
23 lclkrlem2f.x φXV0˙
24 lclkrlem2f.y φYV0˙
25 lclkrlem2f.ne φLELG
26 lclkrlem2f.lp φLE+˙GJ
27 1 3 15 dvhlmod φULMod
28 10 12 13 14 27 17 18 lkrin φLELGLE+˙G
29 eqid LSubSpU=LSubSpU
30 29 11 27 26 lshplss φLE+˙GLSubSpU
31 10 13 14 27 17 18 ldualvaddcl φE+˙GF
32 16 eldifad φBV
33 4 5 6 10 12 27 31 32 ellkr2 φBLE+˙GE+˙GB=Q
34 21 33 mpbird φBLE+˙G
35 29 9 27 30 34 lspsnel5a φNBLE+˙G
36 29 lsssssubg ULModLSubSpUSubGrpU
37 27 36 syl φLSubSpUSubGrpU
38 10 12 29 lkrlss ULModEFLELSubSpU
39 27 17 38 syl2anc φLELSubSpU
40 10 12 29 lkrlss ULModGFLGLSubSpU
41 27 18 40 syl2anc φLGLSubSpU
42 29 lssincl ULModLELSubSpULGLSubSpULELGLSubSpU
43 27 39 41 42 syl3anc φLELGLSubSpU
44 37 43 sseldd φLELGSubGrpU
45 4 29 9 lspsncl ULModBVNBLSubSpU
46 27 32 45 syl2anc φNBLSubSpU
47 37 46 sseldd φNBSubGrpU
48 37 30 sseldd φLE+˙GSubGrpU
49 8 lsmlub LELGSubGrpUNBSubGrpULE+˙GSubGrpULELGLE+˙GNBLE+˙GLELG˙NBLE+˙G
50 44 47 48 49 syl3anc φLELGLE+˙GNBLE+˙GLELG˙NBLE+˙G
51 28 35 50 mpbi2and φLELG˙NBLE+˙G