Metamath Proof Explorer


Theorem lclkrlem2f

Description: Lemma for lclkr . Construct a closed hyperplane under the kernel of the sum. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H = LHyp K
lclkrlem2f.o ˙ = ocH K W
lclkrlem2f.u U = DVecH K W
lclkrlem2f.v V = Base U
lclkrlem2f.s S = Scalar U
lclkrlem2f.q Q = 0 S
lclkrlem2f.z 0 ˙ = 0 U
lclkrlem2f.a ˙ = LSSum U
lclkrlem2f.n N = LSpan U
lclkrlem2f.f F = LFnl U
lclkrlem2f.j J = LSHyp U
lclkrlem2f.l L = LKer U
lclkrlem2f.d D = LDual U
lclkrlem2f.p + ˙ = + D
lclkrlem2f.k φ K HL W H
lclkrlem2f.b φ B V 0 ˙
lclkrlem2f.e φ E F
lclkrlem2f.g φ G F
lclkrlem2f.le φ L E = ˙ X
lclkrlem2f.lg φ L G = ˙ Y
lclkrlem2f.kb φ E + ˙ G B = Q
lclkrlem2f.nx φ ¬ X ˙ B ¬ Y ˙ B
lclkrlem2f.x φ X V 0 ˙
lclkrlem2f.y φ Y V 0 ˙
lclkrlem2f.ne φ L E L G
lclkrlem2f.lp φ L E + ˙ G J
Assertion lclkrlem2f φ L E L G ˙ N B L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H = LHyp K
2 lclkrlem2f.o ˙ = ocH K W
3 lclkrlem2f.u U = DVecH K W
4 lclkrlem2f.v V = Base U
5 lclkrlem2f.s S = Scalar U
6 lclkrlem2f.q Q = 0 S
7 lclkrlem2f.z 0 ˙ = 0 U
8 lclkrlem2f.a ˙ = LSSum U
9 lclkrlem2f.n N = LSpan U
10 lclkrlem2f.f F = LFnl U
11 lclkrlem2f.j J = LSHyp U
12 lclkrlem2f.l L = LKer U
13 lclkrlem2f.d D = LDual U
14 lclkrlem2f.p + ˙ = + D
15 lclkrlem2f.k φ K HL W H
16 lclkrlem2f.b φ B V 0 ˙
17 lclkrlem2f.e φ E F
18 lclkrlem2f.g φ G F
19 lclkrlem2f.le φ L E = ˙ X
20 lclkrlem2f.lg φ L G = ˙ Y
21 lclkrlem2f.kb φ E + ˙ G B = Q
22 lclkrlem2f.nx φ ¬ X ˙ B ¬ Y ˙ B
23 lclkrlem2f.x φ X V 0 ˙
24 lclkrlem2f.y φ Y V 0 ˙
25 lclkrlem2f.ne φ L E L G
26 lclkrlem2f.lp φ L E + ˙ G J
27 1 3 15 dvhlmod φ U LMod
28 10 12 13 14 27 17 18 lkrin φ L E L G L E + ˙ G
29 eqid LSubSp U = LSubSp U
30 29 11 27 26 lshplss φ L E + ˙ G LSubSp U
31 10 13 14 27 17 18 ldualvaddcl φ E + ˙ G F
32 16 eldifad φ B V
33 4 5 6 10 12 27 31 32 ellkr2 φ B L E + ˙ G E + ˙ G B = Q
34 21 33 mpbird φ B L E + ˙ G
35 29 9 27 30 34 lspsnel5a φ N B L E + ˙ G
36 29 lsssssubg U LMod LSubSp U SubGrp U
37 27 36 syl φ LSubSp U SubGrp U
38 10 12 29 lkrlss U LMod E F L E LSubSp U
39 27 17 38 syl2anc φ L E LSubSp U
40 10 12 29 lkrlss U LMod G F L G LSubSp U
41 27 18 40 syl2anc φ L G LSubSp U
42 29 lssincl U LMod L E LSubSp U L G LSubSp U L E L G LSubSp U
43 27 39 41 42 syl3anc φ L E L G LSubSp U
44 37 43 sseldd φ L E L G SubGrp U
45 4 29 9 lspsncl U LMod B V N B LSubSp U
46 27 32 45 syl2anc φ N B LSubSp U
47 37 46 sseldd φ N B SubGrp U
48 37 30 sseldd φ L E + ˙ G SubGrp U
49 8 lsmlub L E L G SubGrp U N B SubGrp U L E + ˙ G SubGrp U L E L G L E + ˙ G N B L E + ˙ G L E L G ˙ N B L E + ˙ G
50 44 47 48 49 syl3anc φ L E L G L E + ˙ G N B L E + ˙ G L E L G ˙ N B L E + ˙ G
51 28 35 50 mpbi2and φ L E L G ˙ N B L E + ˙ G