Metamath Proof Explorer


Theorem lclkr

Description: The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of Holland95 p. 218, line 20, stating "The f_M that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkr.h H = LHyp K
lclkr.u U = DVecH K W
lclkr.o ˙ = ocH K W
lclkr.f F = LFnl U
lclkr.l L = LKer U
lclkr.d D = LDual U
lclkr.s S = LSubSp D
lclkr.c C = f F | ˙ ˙ L f = L f
lclkr.k φ K HL W H
Assertion lclkr φ C S

Proof

Step Hyp Ref Expression
1 lclkr.h H = LHyp K
2 lclkr.u U = DVecH K W
3 lclkr.o ˙ = ocH K W
4 lclkr.f F = LFnl U
5 lclkr.l L = LKer U
6 lclkr.d D = LDual U
7 lclkr.s S = LSubSp D
8 lclkr.c C = f F | ˙ ˙ L f = L f
9 lclkr.k φ K HL W H
10 ssrab2 f F | ˙ ˙ L f = L f F
11 10 a1i φ f F | ˙ ˙ L f = L f F
12 8 a1i φ C = f F | ˙ ˙ L f = L f
13 eqid Base D = Base D
14 1 2 9 dvhlmod φ U LMod
15 4 6 13 14 ldualvbase φ Base D = F
16 11 12 15 3sstr4d φ C Base D
17 eqid Scalar U = Scalar U
18 eqid 0 Scalar U = 0 Scalar U
19 eqid Base U = Base U
20 17 18 19 4 lfl0f U LMod Base U × 0 Scalar U F
21 14 20 syl φ Base U × 0 Scalar U F
22 1 2 3 19 9 dochoc1 φ ˙ ˙ Base U = Base U
23 eqid Base U × 0 Scalar U = Base U × 0 Scalar U
24 17 18 19 4 5 lkr0f U LMod Base U × 0 Scalar U F L Base U × 0 Scalar U = Base U Base U × 0 Scalar U = Base U × 0 Scalar U
25 14 20 24 syl2anc2 φ L Base U × 0 Scalar U = Base U Base U × 0 Scalar U = Base U × 0 Scalar U
26 23 25 mpbiri φ L Base U × 0 Scalar U = Base U
27 26 fveq2d φ ˙ L Base U × 0 Scalar U = ˙ Base U
28 27 fveq2d φ ˙ ˙ L Base U × 0 Scalar U = ˙ ˙ Base U
29 22 28 26 3eqtr4d φ ˙ ˙ L Base U × 0 Scalar U = L Base U × 0 Scalar U
30 8 lcfl1lem Base U × 0 Scalar U C Base U × 0 Scalar U F ˙ ˙ L Base U × 0 Scalar U = L Base U × 0 Scalar U
31 21 29 30 sylanbrc φ Base U × 0 Scalar U C
32 31 ne0d φ C
33 eqid + D = + D
34 9 adantr φ x Base Scalar D a C b C K HL W H
35 eqid Base Scalar U = Base Scalar U
36 eqid D = D
37 simpr1 φ x Base Scalar D a C b C x Base Scalar D
38 eqid Scalar D = Scalar D
39 eqid Base Scalar D = Base Scalar D
40 17 35 6 38 39 14 ldualsbase φ Base Scalar D = Base Scalar U
41 40 adantr φ x Base Scalar D a C b C Base Scalar D = Base Scalar U
42 37 41 eleqtrd φ x Base Scalar D a C b C x Base Scalar U
43 simpr2 φ x Base Scalar D a C b C a C
44 1 3 2 4 5 6 17 35 36 8 34 42 43 lclkrlem1 φ x Base Scalar D a C b C x D a C
45 simpr3 φ x Base Scalar D a C b C b C
46 1 3 2 4 5 6 33 8 34 44 45 lclkrlem2 φ x Base Scalar D a C b C x D a + D b C
47 46 ralrimivvva φ x Base Scalar D a C b C x D a + D b C
48 38 39 13 33 36 7 islss C S C Base D C x Base Scalar D a C b C x D a + D b C
49 16 32 47 48 syl3anbrc φ C S