Metamath Proof Explorer


Theorem lclkrlem2

Description: The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a through lclkrlem2y are used for the proof. Here we express lclkrlem2y in terms of membership in the set C of functionals with closed kernels. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2.h H=LHypK
lclkrlem2.o ˙=ocHKW
lclkrlem2.u U=DVecHKW
lclkrlem2.f F=LFnlU
lclkrlem2.l L=LKerU
lclkrlem2.d D=LDualU
lclkrlem2.p +˙=+D
lclkrlem2.c C=fF|˙˙Lf=Lf
lclkrlem2.k φKHLWH
lclkrlem2.e φEC
lclkrlem2.g φGC
Assertion lclkrlem2 φE+˙GC

Proof

Step Hyp Ref Expression
1 lclkrlem2.h H=LHypK
2 lclkrlem2.o ˙=ocHKW
3 lclkrlem2.u U=DVecHKW
4 lclkrlem2.f F=LFnlU
5 lclkrlem2.l L=LKerU
6 lclkrlem2.d D=LDualU
7 lclkrlem2.p +˙=+D
8 lclkrlem2.c C=fF|˙˙Lf=Lf
9 lclkrlem2.k φKHLWH
10 lclkrlem2.e φEC
11 lclkrlem2.g φGC
12 8 lcfl1lem ECEF˙˙LE=LE
13 12 simplbi ECEF
14 10 13 syl φEF
15 8 lcfl1lem GCGF˙˙LG=LG
16 15 simplbi GCGF
17 11 16 syl φGF
18 8 14 lcfl1 φEC˙˙LE=LE
19 10 18 mpbid φ˙˙LE=LE
20 8 17 lcfl1 φGC˙˙LG=LG
21 11 20 mpbid φ˙˙LG=LG
22 5 1 2 3 4 6 7 9 14 17 19 21 lclkrlem2y φ˙˙LE+˙G=LE+˙G
23 1 3 9 dvhlmod φULMod
24 4 6 7 23 14 17 ldualvaddcl φE+˙GF
25 8 24 lcfl1 φE+˙GC˙˙LE+˙G=LE+˙G
26 22 25 mpbird φE+˙GC