Metamath Proof Explorer


Theorem lclkrlem2y

Description: Lemma for lclkr . Restate the hypotheses for E and G to say their kernels are closed, in order to eliminate the generating vectors X and Y . (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2y.l L=LKerU
lclkrlem2y.h H=LHypK
lclkrlem2y.o ˙=ocHKW
lclkrlem2y.u U=DVecHKW
lclkrlem2y.f F=LFnlU
lclkrlem2y.d D=LDualU
lclkrlem2y.p +˙=+D
lclkrlem2y.k φKHLWH
lclkrlem2y.e φEF
lclkrlem2y.g φGF
lclkrlem2y.le φ˙˙LE=LE
lclkrlem2y.lg φ˙˙LG=LG
Assertion lclkrlem2y φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2y.l L=LKerU
2 lclkrlem2y.h H=LHypK
3 lclkrlem2y.o ˙=ocHKW
4 lclkrlem2y.u U=DVecHKW
5 lclkrlem2y.f F=LFnlU
6 lclkrlem2y.d D=LDualU
7 lclkrlem2y.p +˙=+D
8 lclkrlem2y.k φKHLWH
9 lclkrlem2y.e φEF
10 lclkrlem2y.g φGF
11 lclkrlem2y.le φ˙˙LE=LE
12 lclkrlem2y.lg φ˙˙LG=LG
13 eqid BaseU=BaseU
14 2 3 4 13 5 1 8 10 lcfl8a φ˙˙LG=LGyBaseULG=˙y
15 12 14 mpbid φyBaseULG=˙y
16 2 3 4 13 5 1 8 9 lcfl8a φ˙˙LE=LExBaseULE=˙x
17 11 16 mpbid φxBaseULE=˙x
18 8 3ad2ant1 φxBaseULE=˙xyBaseULG=˙yKHLWH
19 simp21 φxBaseULE=˙xyBaseULG=˙yxBaseU
20 simp23 φxBaseULE=˙xyBaseULG=˙yyBaseU
21 9 3ad2ant1 φxBaseULE=˙xyBaseULG=˙yEF
22 10 3ad2ant1 φxBaseULE=˙xyBaseULG=˙yGF
23 simp22 φxBaseULE=˙xyBaseULG=˙yLE=˙x
24 simp3 φxBaseULE=˙xyBaseULG=˙yLG=˙y
25 1 2 3 4 13 5 6 7 18 19 20 21 22 23 24 lclkrlem2x φxBaseULE=˙xyBaseULG=˙y˙˙LE+˙G=LE+˙G
26 25 3exp φxBaseULE=˙xyBaseULG=˙y˙˙LE+˙G=LE+˙G
27 26 3expd φxBaseULE=˙xyBaseULG=˙y˙˙LE+˙G=LE+˙G
28 27 rexlimdv φxBaseULE=˙xyBaseULG=˙y˙˙LE+˙G=LE+˙G
29 17 28 mpd φyBaseULG=˙y˙˙LE+˙G=LE+˙G
30 29 rexlimdv φyBaseULG=˙y˙˙LE+˙G=LE+˙G
31 15 30 mpd φ˙˙LE+˙G=LE+˙G