Metamath Proof Explorer


Theorem lclkrlem2y

Description: Lemma for lclkr . Restate the hypotheses for E and G to say their kernels are closed, in order to eliminate the generating vectors X and Y . (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2y.l L = LKer U
lclkrlem2y.h H = LHyp K
lclkrlem2y.o ˙ = ocH K W
lclkrlem2y.u U = DVecH K W
lclkrlem2y.f F = LFnl U
lclkrlem2y.d D = LDual U
lclkrlem2y.p + ˙ = + D
lclkrlem2y.k φ K HL W H
lclkrlem2y.e φ E F
lclkrlem2y.g φ G F
lclkrlem2y.le φ ˙ ˙ L E = L E
lclkrlem2y.lg φ ˙ ˙ L G = L G
Assertion lclkrlem2y φ ˙ ˙ L E + ˙ G = L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2y.l L = LKer U
2 lclkrlem2y.h H = LHyp K
3 lclkrlem2y.o ˙ = ocH K W
4 lclkrlem2y.u U = DVecH K W
5 lclkrlem2y.f F = LFnl U
6 lclkrlem2y.d D = LDual U
7 lclkrlem2y.p + ˙ = + D
8 lclkrlem2y.k φ K HL W H
9 lclkrlem2y.e φ E F
10 lclkrlem2y.g φ G F
11 lclkrlem2y.le φ ˙ ˙ L E = L E
12 lclkrlem2y.lg φ ˙ ˙ L G = L G
13 eqid Base U = Base U
14 2 3 4 13 5 1 8 10 lcfl8a φ ˙ ˙ L G = L G y Base U L G = ˙ y
15 12 14 mpbid φ y Base U L G = ˙ y
16 2 3 4 13 5 1 8 9 lcfl8a φ ˙ ˙ L E = L E x Base U L E = ˙ x
17 11 16 mpbid φ x Base U L E = ˙ x
18 8 3ad2ant1 φ x Base U L E = ˙ x y Base U L G = ˙ y K HL W H
19 simp21 φ x Base U L E = ˙ x y Base U L G = ˙ y x Base U
20 simp23 φ x Base U L E = ˙ x y Base U L G = ˙ y y Base U
21 9 3ad2ant1 φ x Base U L E = ˙ x y Base U L G = ˙ y E F
22 10 3ad2ant1 φ x Base U L E = ˙ x y Base U L G = ˙ y G F
23 simp22 φ x Base U L E = ˙ x y Base U L G = ˙ y L E = ˙ x
24 simp3 φ x Base U L E = ˙ x y Base U L G = ˙ y L G = ˙ y
25 1 2 3 4 13 5 6 7 18 19 20 21 22 23 24 lclkrlem2x φ x Base U L E = ˙ x y Base U L G = ˙ y ˙ ˙ L E + ˙ G = L E + ˙ G
26 25 3exp φ x Base U L E = ˙ x y Base U L G = ˙ y ˙ ˙ L E + ˙ G = L E + ˙ G
27 26 3expd φ x Base U L E = ˙ x y Base U L G = ˙ y ˙ ˙ L E + ˙ G = L E + ˙ G
28 27 rexlimdv φ x Base U L E = ˙ x y Base U L G = ˙ y ˙ ˙ L E + ˙ G = L E + ˙ G
29 17 28 mpd φ y Base U L G = ˙ y ˙ ˙ L E + ˙ G = L E + ˙ G
30 29 rexlimdv φ y Base U L G = ˙ y ˙ ˙ L E + ˙ G = L E + ˙ G
31 15 30 mpd φ ˙ ˙ L E + ˙ G = L E + ˙ G