Metamath Proof Explorer


Theorem lclkrlem2x

Description: Lemma for lclkr . Eliminate by cases the hypotheses of lclkrlem2u , lclkrlem2u and lclkrlem2w . (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2x.l L=LKerU
lclkrlem2x.h H=LHypK
lclkrlem2x.o ˙=ocHKW
lclkrlem2x.u U=DVecHKW
lclkrlem2x.v V=BaseU
lclkrlem2x.f F=LFnlU
lclkrlem2x.d D=LDualU
lclkrlem2x.p +˙=+D
lclkrlem2x.k φKHLWH
lclkrlem2x.x φXV
lclkrlem2x.y φYV
lclkrlem2x.e φEF
lclkrlem2x.g φGF
lclkrlem2x.le φLE=˙X
lclkrlem2x.lg φLG=˙Y
Assertion lclkrlem2x φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2x.l L=LKerU
2 lclkrlem2x.h H=LHypK
3 lclkrlem2x.o ˙=ocHKW
4 lclkrlem2x.u U=DVecHKW
5 lclkrlem2x.v V=BaseU
6 lclkrlem2x.f F=LFnlU
7 lclkrlem2x.d D=LDualU
8 lclkrlem2x.p +˙=+D
9 lclkrlem2x.k φKHLWH
10 lclkrlem2x.x φXV
11 lclkrlem2x.y φYV
12 lclkrlem2x.e φEF
13 lclkrlem2x.g φGF
14 lclkrlem2x.le φLE=˙X
15 lclkrlem2x.lg φLG=˙Y
16 df-ne E+˙GX0ScalarU¬E+˙GX=0ScalarU
17 eqid U=U
18 eqid ScalarU=ScalarU
19 eqid ScalarU=ScalarU
20 eqid 0ScalarU=0ScalarU
21 eqid invrScalarU=invrScalarU
22 eqid -U=-U
23 10 adantr φE+˙GX0ScalarUXV
24 11 adantr φE+˙GX0ScalarUYV
25 12 adantr φE+˙GX0ScalarUEF
26 13 adantr φE+˙GX0ScalarUGF
27 eqid LSpanU=LSpanU
28 eqid LSSumU=LSSumU
29 9 adantr φE+˙GX0ScalarUKHLWH
30 14 adantr φE+˙GX0ScalarULE=˙X
31 15 adantr φE+˙GX0ScalarULG=˙Y
32 simpr φE+˙GX0ScalarUE+˙GX0ScalarU
33 5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32 lclkrlem2u φE+˙GX0ScalarU˙˙LE+˙G=LE+˙G
34 16 33 sylan2br φ¬E+˙GX=0ScalarU˙˙LE+˙G=LE+˙G
35 df-ne E+˙GY0ScalarU¬E+˙GY=0ScalarU
36 10 adantr φE+˙GY0ScalarUXV
37 11 adantr φE+˙GY0ScalarUYV
38 12 adantr φE+˙GY0ScalarUEF
39 13 adantr φE+˙GY0ScalarUGF
40 9 adantr φE+˙GY0ScalarUKHLWH
41 14 adantr φE+˙GY0ScalarULE=˙X
42 15 adantr φE+˙GY0ScalarULG=˙Y
43 simpr φE+˙GY0ScalarUE+˙GY0ScalarU
44 5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43 lclkrlem2t φE+˙GY0ScalarU˙˙LE+˙G=LE+˙G
45 35 44 sylan2br φ¬E+˙GY=0ScalarU˙˙LE+˙G=LE+˙G
46 10 adantr φE+˙GX=0ScalarUE+˙GY=0ScalarUXV
47 11 adantr φE+˙GX=0ScalarUE+˙GY=0ScalarUYV
48 12 adantr φE+˙GX=0ScalarUE+˙GY=0ScalarUEF
49 13 adantr φE+˙GX=0ScalarUE+˙GY=0ScalarUGF
50 9 adantr φE+˙GX=0ScalarUE+˙GY=0ScalarUKHLWH
51 14 adantr φE+˙GX=0ScalarUE+˙GY=0ScalarULE=˙X
52 15 adantr φE+˙GX=0ScalarUE+˙GY=0ScalarULG=˙Y
53 simprl φE+˙GX=0ScalarUE+˙GY=0ScalarUE+˙GX=0ScalarU
54 simprr φE+˙GX=0ScalarUE+˙GY=0ScalarUE+˙GY=0ScalarU
55 5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54 lclkrlem2w φE+˙GX=0ScalarUE+˙GY=0ScalarU˙˙LE+˙G=LE+˙G
56 34 45 55 pm2.61dda φ˙˙LE+˙G=LE+˙G