Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2x.l |
|
2 |
|
lclkrlem2x.h |
|
3 |
|
lclkrlem2x.o |
|
4 |
|
lclkrlem2x.u |
|
5 |
|
lclkrlem2x.v |
|
6 |
|
lclkrlem2x.f |
|
7 |
|
lclkrlem2x.d |
|
8 |
|
lclkrlem2x.p |
|
9 |
|
lclkrlem2x.k |
|
10 |
|
lclkrlem2x.x |
|
11 |
|
lclkrlem2x.y |
|
12 |
|
lclkrlem2x.e |
|
13 |
|
lclkrlem2x.g |
|
14 |
|
lclkrlem2x.le |
|
15 |
|
lclkrlem2x.lg |
|
16 |
|
df-ne |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
10
|
adantr |
|
24 |
11
|
adantr |
|
25 |
12
|
adantr |
|
26 |
13
|
adantr |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
9
|
adantr |
|
30 |
14
|
adantr |
|
31 |
15
|
adantr |
|
32 |
|
simpr |
|
33 |
5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32
|
lclkrlem2u |
|
34 |
16 33
|
sylan2br |
|
35 |
|
df-ne |
|
36 |
10
|
adantr |
|
37 |
11
|
adantr |
|
38 |
12
|
adantr |
|
39 |
13
|
adantr |
|
40 |
9
|
adantr |
|
41 |
14
|
adantr |
|
42 |
15
|
adantr |
|
43 |
|
simpr |
|
44 |
5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43
|
lclkrlem2t |
|
45 |
35 44
|
sylan2br |
|
46 |
10
|
adantr |
|
47 |
11
|
adantr |
|
48 |
12
|
adantr |
|
49 |
13
|
adantr |
|
50 |
9
|
adantr |
|
51 |
14
|
adantr |
|
52 |
15
|
adantr |
|
53 |
|
simprl |
|
54 |
|
simprr |
|
55 |
5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54
|
lclkrlem2w |
|
56 |
34 45 55
|
pm2.61dda |
|