Metamath Proof Explorer


Theorem lclkrlem2x

Description: Lemma for lclkr . Eliminate by cases the hypotheses of lclkrlem2u , lclkrlem2u and lclkrlem2w . (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkrlem2x.l L = LKer U
lclkrlem2x.h H = LHyp K
lclkrlem2x.o ˙ = ocH K W
lclkrlem2x.u U = DVecH K W
lclkrlem2x.v V = Base U
lclkrlem2x.f F = LFnl U
lclkrlem2x.d D = LDual U
lclkrlem2x.p + ˙ = + D
lclkrlem2x.k φ K HL W H
lclkrlem2x.x φ X V
lclkrlem2x.y φ Y V
lclkrlem2x.e φ E F
lclkrlem2x.g φ G F
lclkrlem2x.le φ L E = ˙ X
lclkrlem2x.lg φ L G = ˙ Y
Assertion lclkrlem2x φ ˙ ˙ L E + ˙ G = L E + ˙ G

Proof

Step Hyp Ref Expression
1 lclkrlem2x.l L = LKer U
2 lclkrlem2x.h H = LHyp K
3 lclkrlem2x.o ˙ = ocH K W
4 lclkrlem2x.u U = DVecH K W
5 lclkrlem2x.v V = Base U
6 lclkrlem2x.f F = LFnl U
7 lclkrlem2x.d D = LDual U
8 lclkrlem2x.p + ˙ = + D
9 lclkrlem2x.k φ K HL W H
10 lclkrlem2x.x φ X V
11 lclkrlem2x.y φ Y V
12 lclkrlem2x.e φ E F
13 lclkrlem2x.g φ G F
14 lclkrlem2x.le φ L E = ˙ X
15 lclkrlem2x.lg φ L G = ˙ Y
16 df-ne E + ˙ G X 0 Scalar U ¬ E + ˙ G X = 0 Scalar U
17 eqid U = U
18 eqid Scalar U = Scalar U
19 eqid Scalar U = Scalar U
20 eqid 0 Scalar U = 0 Scalar U
21 eqid inv r Scalar U = inv r Scalar U
22 eqid - U = - U
23 10 adantr φ E + ˙ G X 0 Scalar U X V
24 11 adantr φ E + ˙ G X 0 Scalar U Y V
25 12 adantr φ E + ˙ G X 0 Scalar U E F
26 13 adantr φ E + ˙ G X 0 Scalar U G F
27 eqid LSpan U = LSpan U
28 eqid LSSum U = LSSum U
29 9 adantr φ E + ˙ G X 0 Scalar U K HL W H
30 14 adantr φ E + ˙ G X 0 Scalar U L E = ˙ X
31 15 adantr φ E + ˙ G X 0 Scalar U L G = ˙ Y
32 simpr φ E + ˙ G X 0 Scalar U E + ˙ G X 0 Scalar U
33 5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32 lclkrlem2u φ E + ˙ G X 0 Scalar U ˙ ˙ L E + ˙ G = L E + ˙ G
34 16 33 sylan2br φ ¬ E + ˙ G X = 0 Scalar U ˙ ˙ L E + ˙ G = L E + ˙ G
35 df-ne E + ˙ G Y 0 Scalar U ¬ E + ˙ G Y = 0 Scalar U
36 10 adantr φ E + ˙ G Y 0 Scalar U X V
37 11 adantr φ E + ˙ G Y 0 Scalar U Y V
38 12 adantr φ E + ˙ G Y 0 Scalar U E F
39 13 adantr φ E + ˙ G Y 0 Scalar U G F
40 9 adantr φ E + ˙ G Y 0 Scalar U K HL W H
41 14 adantr φ E + ˙ G Y 0 Scalar U L E = ˙ X
42 15 adantr φ E + ˙ G Y 0 Scalar U L G = ˙ Y
43 simpr φ E + ˙ G Y 0 Scalar U E + ˙ G Y 0 Scalar U
44 5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43 lclkrlem2t φ E + ˙ G Y 0 Scalar U ˙ ˙ L E + ˙ G = L E + ˙ G
45 35 44 sylan2br φ ¬ E + ˙ G Y = 0 Scalar U ˙ ˙ L E + ˙ G = L E + ˙ G
46 10 adantr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U X V
47 11 adantr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U Y V
48 12 adantr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U E F
49 13 adantr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U G F
50 9 adantr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U K HL W H
51 14 adantr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U L E = ˙ X
52 15 adantr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U L G = ˙ Y
53 simprl φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U E + ˙ G X = 0 Scalar U
54 simprr φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U E + ˙ G Y = 0 Scalar U
55 5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54 lclkrlem2w φ E + ˙ G X = 0 Scalar U E + ˙ G Y = 0 Scalar U ˙ ˙ L E + ˙ G = L E + ˙ G
56 34 45 55 pm2.61dda φ ˙ ˙ L E + ˙ G = L E + ˙ G