| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2x.l |
|
| 2 |
|
lclkrlem2x.h |
|
| 3 |
|
lclkrlem2x.o |
|
| 4 |
|
lclkrlem2x.u |
|
| 5 |
|
lclkrlem2x.v |
|
| 6 |
|
lclkrlem2x.f |
|
| 7 |
|
lclkrlem2x.d |
|
| 8 |
|
lclkrlem2x.p |
|
| 9 |
|
lclkrlem2x.k |
|
| 10 |
|
lclkrlem2x.x |
|
| 11 |
|
lclkrlem2x.y |
|
| 12 |
|
lclkrlem2x.e |
|
| 13 |
|
lclkrlem2x.g |
|
| 14 |
|
lclkrlem2x.le |
|
| 15 |
|
lclkrlem2x.lg |
|
| 16 |
|
df-ne |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
10
|
adantr |
|
| 24 |
11
|
adantr |
|
| 25 |
12
|
adantr |
|
| 26 |
13
|
adantr |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
9
|
adantr |
|
| 30 |
14
|
adantr |
|
| 31 |
15
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32
|
lclkrlem2u |
|
| 34 |
16 33
|
sylan2br |
|
| 35 |
|
df-ne |
|
| 36 |
10
|
adantr |
|
| 37 |
11
|
adantr |
|
| 38 |
12
|
adantr |
|
| 39 |
13
|
adantr |
|
| 40 |
9
|
adantr |
|
| 41 |
14
|
adantr |
|
| 42 |
15
|
adantr |
|
| 43 |
|
simpr |
|
| 44 |
5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43
|
lclkrlem2t |
|
| 45 |
35 44
|
sylan2br |
|
| 46 |
10
|
adantr |
|
| 47 |
11
|
adantr |
|
| 48 |
12
|
adantr |
|
| 49 |
13
|
adantr |
|
| 50 |
9
|
adantr |
|
| 51 |
14
|
adantr |
|
| 52 |
15
|
adantr |
|
| 53 |
|
simprl |
|
| 54 |
|
simprr |
|
| 55 |
5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54
|
lclkrlem2w |
|
| 56 |
34 45 55
|
pm2.61dda |
|