Description: Lemma for lclkr . Eliminate by cases the hypotheses of lclkrlem2u , lclkrlem2u and lclkrlem2w . (Contributed by NM, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2x.l | |
|
lclkrlem2x.h | |
||
lclkrlem2x.o | |
||
lclkrlem2x.u | |
||
lclkrlem2x.v | |
||
lclkrlem2x.f | |
||
lclkrlem2x.d | |
||
lclkrlem2x.p | |
||
lclkrlem2x.k | |
||
lclkrlem2x.x | |
||
lclkrlem2x.y | |
||
lclkrlem2x.e | |
||
lclkrlem2x.g | |
||
lclkrlem2x.le | |
||
lclkrlem2x.lg | |
||
Assertion | lclkrlem2x | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2x.l | |
|
2 | lclkrlem2x.h | |
|
3 | lclkrlem2x.o | |
|
4 | lclkrlem2x.u | |
|
5 | lclkrlem2x.v | |
|
6 | lclkrlem2x.f | |
|
7 | lclkrlem2x.d | |
|
8 | lclkrlem2x.p | |
|
9 | lclkrlem2x.k | |
|
10 | lclkrlem2x.x | |
|
11 | lclkrlem2x.y | |
|
12 | lclkrlem2x.e | |
|
13 | lclkrlem2x.g | |
|
14 | lclkrlem2x.le | |
|
15 | lclkrlem2x.lg | |
|
16 | df-ne | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 10 | adantr | |
24 | 11 | adantr | |
25 | 12 | adantr | |
26 | 13 | adantr | |
27 | eqid | |
|
28 | eqid | |
|
29 | 9 | adantr | |
30 | 14 | adantr | |
31 | 15 | adantr | |
32 | simpr | |
|
33 | 5 17 18 19 20 21 22 6 7 8 23 24 25 26 27 1 2 3 4 28 29 30 31 32 | lclkrlem2u | |
34 | 16 33 | sylan2br | |
35 | df-ne | |
|
36 | 10 | adantr | |
37 | 11 | adantr | |
38 | 12 | adantr | |
39 | 13 | adantr | |
40 | 9 | adantr | |
41 | 14 | adantr | |
42 | 15 | adantr | |
43 | simpr | |
|
44 | 5 17 18 19 20 21 22 6 7 8 36 37 38 39 27 1 2 3 4 28 40 41 42 43 | lclkrlem2t | |
45 | 35 44 | sylan2br | |
46 | 10 | adantr | |
47 | 11 | adantr | |
48 | 12 | adantr | |
49 | 13 | adantr | |
50 | 9 | adantr | |
51 | 14 | adantr | |
52 | 15 | adantr | |
53 | simprl | |
|
54 | simprr | |
|
55 | 5 17 18 19 20 21 22 6 7 8 46 47 48 49 27 1 2 3 4 28 50 51 52 53 54 | lclkrlem2w | |
56 | 34 45 55 | pm2.61dda | |