Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lclkrlem2w
Metamath Proof Explorer
Description: Lemma for lclkr . This is the same as lclkrlem2u and lclkrlem2u with the inequality hypotheses negated. When the sum of two
functionals is zero at each generating vector, the kernel is the
vector space and therefore closed. (Contributed by NM , 16-Jan-2015)
Ref
Expression
Hypotheses
lclkrlem2m.v
lclkrlem2m.t
lclkrlem2m.s
lclkrlem2m.q
lclkrlem2m.z
lclkrlem2m.i
lclkrlem2m.m
lclkrlem2m.f
lclkrlem2m.d
lclkrlem2m.p
lclkrlem2m.x
lclkrlem2m.y
lclkrlem2m.e
lclkrlem2m.g
lclkrlem2n.n
lclkrlem2n.l
lclkrlem2o.h
lclkrlem2o.o
lclkrlem2o.u
lclkrlem2o.a
lclkrlem2o.k
lclkrlem2q.le
lclkrlem2q.lg
lclkrlem2v.j
lclkrlem2v.k
Assertion
lclkrlem2w
Proof
Step
Hyp
Ref
Expression
1
lclkrlem2m.v
2
lclkrlem2m.t
3
lclkrlem2m.s
4
lclkrlem2m.q
5
lclkrlem2m.z
6
lclkrlem2m.i
7
lclkrlem2m.m
8
lclkrlem2m.f
9
lclkrlem2m.d
10
lclkrlem2m.p
11
lclkrlem2m.x
12
lclkrlem2m.y
13
lclkrlem2m.e
14
lclkrlem2m.g
15
lclkrlem2n.n
16
lclkrlem2n.l
17
lclkrlem2o.h
18
lclkrlem2o.o
19
lclkrlem2o.u
20
lclkrlem2o.a
21
lclkrlem2o.k
22
lclkrlem2q.le
23
lclkrlem2q.lg
24
lclkrlem2v.j
25
lclkrlem2v.k
26
17 19 18 1 21
dochoc1
27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
lclkrlem2v
28
27
fveq2d
29
28
fveq2d
30
26 29 27
3eqtr4d