Metamath Proof Explorer


Theorem lclkrlem2w

Description: Lemma for lclkr . This is the same as lclkrlem2u and lclkrlem2u with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V=BaseU
lclkrlem2m.t ·˙=U
lclkrlem2m.s S=ScalarU
lclkrlem2m.q ×˙=S
lclkrlem2m.z 0˙=0S
lclkrlem2m.i I=invrS
lclkrlem2m.m -˙=-U
lclkrlem2m.f F=LFnlU
lclkrlem2m.d D=LDualU
lclkrlem2m.p +˙=+D
lclkrlem2m.x φXV
lclkrlem2m.y φYV
lclkrlem2m.e φEF
lclkrlem2m.g φGF
lclkrlem2n.n N=LSpanU
lclkrlem2n.l L=LKerU
lclkrlem2o.h H=LHypK
lclkrlem2o.o ˙=ocHKW
lclkrlem2o.u U=DVecHKW
lclkrlem2o.a ˙=LSSumU
lclkrlem2o.k φKHLWH
lclkrlem2q.le φLE=˙X
lclkrlem2q.lg φLG=˙Y
lclkrlem2v.j φE+˙GX=0˙
lclkrlem2v.k φE+˙GY=0˙
Assertion lclkrlem2w φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V=BaseU
2 lclkrlem2m.t ·˙=U
3 lclkrlem2m.s S=ScalarU
4 lclkrlem2m.q ×˙=S
5 lclkrlem2m.z 0˙=0S
6 lclkrlem2m.i I=invrS
7 lclkrlem2m.m -˙=-U
8 lclkrlem2m.f F=LFnlU
9 lclkrlem2m.d D=LDualU
10 lclkrlem2m.p +˙=+D
11 lclkrlem2m.x φXV
12 lclkrlem2m.y φYV
13 lclkrlem2m.e φEF
14 lclkrlem2m.g φGF
15 lclkrlem2n.n N=LSpanU
16 lclkrlem2n.l L=LKerU
17 lclkrlem2o.h H=LHypK
18 lclkrlem2o.o ˙=ocHKW
19 lclkrlem2o.u U=DVecHKW
20 lclkrlem2o.a ˙=LSSumU
21 lclkrlem2o.k φKHLWH
22 lclkrlem2q.le φLE=˙X
23 lclkrlem2q.lg φLG=˙Y
24 lclkrlem2v.j φE+˙GX=0˙
25 lclkrlem2v.k φE+˙GY=0˙
26 17 19 18 1 21 dochoc1 φ˙˙V=V
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lclkrlem2v φLE+˙G=V
28 27 fveq2d φ˙LE+˙G=˙V
29 28 fveq2d φ˙˙LE+˙G=˙˙V
30 26 29 27 3eqtr4d φ˙˙LE+˙G=LE+˙G