Description: Lemma for lclkr . This is the same as lclkrlem2u and lclkrlem2u with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2m.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘ 𝑈 ) | ||
lclkrlem2m.s | ⊢ 𝑆 = ( Scalar ‘ 𝑈 ) | ||
lclkrlem2m.q | ⊢ × = ( .r ‘ 𝑆 ) | ||
lclkrlem2m.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
lclkrlem2m.i | ⊢ 𝐼 = ( invr ‘ 𝑆 ) | ||
lclkrlem2m.m | ⊢ − = ( -g ‘ 𝑈 ) | ||
lclkrlem2m.f | ⊢ 𝐹 = ( LFnl ‘ 𝑈 ) | ||
lclkrlem2m.d | ⊢ 𝐷 = ( LDual ‘ 𝑈 ) | ||
lclkrlem2m.p | ⊢ + = ( +g ‘ 𝐷 ) | ||
lclkrlem2m.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
lclkrlem2m.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
lclkrlem2m.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) | ||
lclkrlem2m.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | ||
lclkrlem2n.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | ||
lclkrlem2n.l | ⊢ 𝐿 = ( LKer ‘ 𝑈 ) | ||
lclkrlem2o.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
lclkrlem2o.o | ⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | ||
lclkrlem2o.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
lclkrlem2o.a | ⊢ ⊕ = ( LSSum ‘ 𝑈 ) | ||
lclkrlem2o.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
lclkrlem2q.le | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) | ||
lclkrlem2q.lg | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) | ||
lclkrlem2v.j | ⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 ) | ||
lclkrlem2v.k | ⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 ) | ||
Assertion | lclkrlem2w | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
2 | lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘ 𝑈 ) | |
3 | lclkrlem2m.s | ⊢ 𝑆 = ( Scalar ‘ 𝑈 ) | |
4 | lclkrlem2m.q | ⊢ × = ( .r ‘ 𝑆 ) | |
5 | lclkrlem2m.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
6 | lclkrlem2m.i | ⊢ 𝐼 = ( invr ‘ 𝑆 ) | |
7 | lclkrlem2m.m | ⊢ − = ( -g ‘ 𝑈 ) | |
8 | lclkrlem2m.f | ⊢ 𝐹 = ( LFnl ‘ 𝑈 ) | |
9 | lclkrlem2m.d | ⊢ 𝐷 = ( LDual ‘ 𝑈 ) | |
10 | lclkrlem2m.p | ⊢ + = ( +g ‘ 𝐷 ) | |
11 | lclkrlem2m.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
12 | lclkrlem2m.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
13 | lclkrlem2m.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) | |
14 | lclkrlem2m.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | |
15 | lclkrlem2n.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | |
16 | lclkrlem2n.l | ⊢ 𝐿 = ( LKer ‘ 𝑈 ) | |
17 | lclkrlem2o.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
18 | lclkrlem2o.o | ⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | |
19 | lclkrlem2o.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
20 | lclkrlem2o.a | ⊢ ⊕ = ( LSSum ‘ 𝑈 ) | |
21 | lclkrlem2o.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
22 | lclkrlem2q.le | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) | |
23 | lclkrlem2q.lg | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) | |
24 | lclkrlem2v.j | ⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) = 0 ) | |
25 | lclkrlem2v.k | ⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) = 0 ) | |
26 | 17 19 18 1 21 | dochoc1 | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | lclkrlem2v | ⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) |
28 | 27 | fveq2d | ⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) = ( ⊥ ‘ 𝑉 ) ) |
29 | 28 | fveq2d | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) ) |
30 | 26 29 27 | 3eqtr4d | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |